P.K.R. ARTS COLLEGE FOR WOMEN (AUTONOMOUS)

(Accredited with 'A' grade by NAAC - Affiliated to Bharathiar University, Coimbatore)

GOBICHETTIPALAYAM - 638 476

DEPARTMENT OF PHYSICS

BACHELOR OF SCIENCE IN PHYSICS

Syllabus

For the candidates admitted from the Academic Year 2023-2024 and onwards

Under CBCS PATTERN

B.Sc., PHYSICS PROGRAMME STRUCTURE CBCS – 2023-2024 and onwards

	CBCS – 2023-2024 and onwards						
CATEG ORY	COMPONENTS	NO. OF COURSES	CREDIT(S) /COURSE	TOTAL CREDITS	PROPOSED SEMESTER		
Part – I	Tamil/Hindi/French/Kannada/Malaya lam/Sanskrit	4	3	12	I – IV		
Part – II	English	4	3	12	I - IV		
rari – II	Effective English	1	1	1	Π		
	Core Theory /Core Practical	15	5/4/3//2/1				
	Allied Theory/ Allied Practical	5	5/2	91	I - VI		
	Elective	2	2				
Part - III	Institutional Training/ Articleship Training / Mini Project	1	1	1	To be done in Summer Vacation of Semester IV, ESE in Semester V		
	Open Elective	1	2	2	V		
Part – IV	 A). Foundation Courses Environment Studies Yoga and Ethics B). Ability Enhancement Courses Information Security Consumer Rights C). Skill Enhancement Courses Energy Resources/ Naan Mudhalvan Course Life Skills(Jeevan Kaushal) Programming in C, C++ - 	1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2	4 4 6	I II IV IV V VI		
	Practical/ Naan Mudhalvan Course D). Non-Major Elective i. Indian Women and Society / Advanced Tamil	1	2	2	III		
Part – V	A). Proficiency Enhancement - Self Study CourseB). Competency Enhancement	1	2		V		
	i. NSS/YRC/RRC/CCC/PHY.EDU/Others			5	SEMESTER I – VI		
	ii. CompetencyEnhancement - ProfessionalGrooming	1	1		SEMESTER I – VI		
	iii. Competency Enhancement – Students Social activity (Related	1	1		SEMESTER I –		

CATEG ORY	COMPONENTS	NO. OF COURSES	CREDIT(S) /COURSE	TOTAL CREDITS	PROPOSED SEMESTER
	to Curriculum)	1	1		VI
	Total Marks: 3700	•	Total Credits:	140	

P.K.R ARTS COLLEGE FOR WOMEN (Autonomous Institution, accredited by NAAC with 'A' Grade) Gobichettipalayam – 638476 BACHELOR OF SCIENCE IN PHYSICS Programme Scheme and Scheme of Examinations (For students admitted from 2023-2024 & onwards) CBCS Pattern: 2023-2024

Scholastic Courses:

Senonas	ue courses.								
Category / Part	Components	Course Code	Title of the Course	Hrs/ week	Exam hrs.	CIA	ESE	Total marks	Credits
			SEMESTER – I						
I	Language: I	23LTU01/ 23LHU01/ 23LFU01/ 23LKU01/ 23LMU01/ 23LSU01	Tamil- I/ Hindi-I/ French-I/ Kannada-I/ Malayalam-I / Sanskrit-I	4	3	25	75	100	3
II	English: I	23LEU01	English - I	4	3	25	75	100	3
III	Core: I	23PHU01	Mechanics	6	3	25	75	100	5
III	Core: II	23PHU02	Properties of Matter & Sound	6	3	25	75	100	5
III	Core: III Allied: I	23PHU03	Mathematics – I	5	3	25	75	100	5
III	****	****	Physics – Practical I	3					
IV	Foundation: I	23FCU01	Environmental studies (Curriculum as recommended by UGC)	2	3	50		50	2
			TOTAL	30				550	23
			SEMESTER – II						
I	Language: II	23LTU02/ 23LHU02/ 23LFU02/ 23LKU02/ 23LMU02/ 23LSU02	Tamil- II/ Hindi-II/ French-II/ Kannada-II/ Malayalam-II/ Sanskrit-II	4	3	25	75	100	3
II	English: II	23LEU02	English - II	4	3	25	50	75	3
		23LEEU02	Effective English	2	_	25	-	25	1
III	Core: IV	23PHU04	Heat and Thermodynamics	5	3	25	75	100	4
III	Core: V	23PHU05	Electricity and Magnetism	5	3	25	75	100	4

III	Core: VI Allied: II	23PHU06	Mathematics – II	5	3	25	75	100	5
III	Core: VII Practical: I	23PHU07	Physics – Practical I	3	3	40	60	100	3
IV	Foundation: II	23FCU02	Yoga and Ethics	2	3	50		50	2
			TOTAL	30				650	25
			SEMESTER – III	·					
I	Language: III	23LTU03/ 23LHU03/ 23LFU03/ 23LKU03/ 23LMU03/ 23LSU03	Tamil- III/ Hindi-III/ French-III/ Kannada-III/ Malayalam-III/ Sanskrit-III	4	3	25	75	100	3
II	English: III	23LEU03	English- III	4	3	25	75	100	3
III	Core: VIII	23PHU08	Optics	6	3	25	75	100	5
III	Core: IX Allied: III	23PHU09	Chemistry - I	6	3	25	75	100	5
III	****	****	Physics - Practical II	3	-	-	-	-	-
III	****	****	Allied Chemistry - Practical	3	-	-	-	-	-
IV	Ability Enhancement: I	23AEU01	Information Security	2	3	50		50	2
IV	Non- Major Elective	23NMU01A/ 23NMU01B	Indian Women and Society/ Advanced Tamil	2	3	50		50	2
			TOTAL	30				500	20
			SEMESTER – IV	·					
I	Language: IV	23LTU04/ 23LHU04/ 23LFU04/ 23LKU04/ 23LMU04/ 23LSU04	Tamil- IV/ Hindi-IV/ French-IV/ Kannada-IV/ Malayalam-IV/ Sanskrit-IV	4	3	25	75	100	3
II	English: IV	23LEU04	English- IV	4	3	25	75	100	3
III	Core: X	23PHU10	Mathematical Physics	6	3	25	75	100	5
III	Core: XI Allied: IV	23PHU11	Chemistry - II	5	3	25	75	100	5
III	Core: XII Practical: II	23PHU12	Physics - Practical II	3	3	40	60	100	3
III	Core: XIII Allied: V	23PHU13	Allied Chemistry - Practical	3	3	40	60	100	2

	1			1		1			1
IV	Skill Enhancement: I	23SEPHU01/	Energy Resources / Naan Mudhalvan Course	3		50		50	2
IV	Ability Enhancement : II	23AEU02	Consumer Rights (Curriculum as recommended by UGC)	2	3	50		50	2
			TOTAL	30				700	25
			SEMESTER – V						
III	Core: XIV	23PHU14	Solid State Physics	6	3	25	75	100	5
III	Core: XV	23PHU15	Electronics & Communication	6	3	25	75	100	5
III	Core: XVI	23PHU16A/ 23PHU16B/ 23PHU16C	Institutional training/ Articleship Training/ Mini Project		3	100		100	1
III	****	****	Electronics- Practical III	3	-	-	-	-	-
III	****	****	Digital Electronics and Microprocessor - Practical IV	3	-	-	-	-	-
III	Core: XVII Open Elective	****	Opted by the students Offered by other Departments	4	3	25	75	100	2
III	Core: XVIII Elective I	23PHU17A/ 23PHU17B/ 23PHU17C	Digital Electronics and Microprocessor / Soil Physics / Geo Physics	5	3	25	75	100	4
IV	Skill Enhancement: II	23SEU02	Life Skills (Jeevan Kaushal) (Curriculum as recommended by UGC)	3	3	50	-	50	2
V	Proficiency Enhancement	23PEU01	Lasers (Self-Study)		3		100	100	2
			TOTAL	30				650	21
			SEMESTER – VI	1 1				1	
III	Core: XIX	23PHU18	Quantum Mechanics and Relativity	6	3	25	75	100	5
III	Core: XX	23PHU19	Atomic and Nuclear Physics	6	3	25	75	100	5
III	Core: XXI	23PHU20	Introduction to Space Physics	4	3	25	75	100	3
III	Core: XXII Practical: III	23PHU21	Electronics - Practical III	3	3	40	60	100	2
III	Core: XXIII Practical: IV	23PHU22	Digital Electronics and Microprocessor - Practical IV	3	3	40	60	100	2
III	Core: XXIV Elective II	23PHU23A/ 23PHU23B/ 23PHU23C	Basic Concepts of C, C++/ Applied Instrumentation / Smart Materials	5	3	25	75	100	4
IV	Skill Enhancement: III	23SEPHU03 /	Programming in C, C++ - Practical/ Naan Mudhalvan Course	3	3	50	-	50	2
			TOTAL	30				650	23
				1	1	1			

V	Competency Enhancement	NSS/YRC/RRC/CCC/PHY.ED U/Others	SEMESTER I – VI	1
		Professional Grooming	SEMESTER I – VI	1
		Students Social activity (Related to the Curriculum)	SEMESTER I – VI	1

Total Marks: 3700

Total Credits: 140

a) List of elective courses for Semester – V:

*Minimum of 15 students must be admitted in an elective course. *Elective can be offered as self-study courses.

Course Code	Semester	Course	Hours per Week	Credits
23PHU17A		A. Digital Electronics and Microprocessor	5	4
23PHU17B	V	B. Soil Physics	5	4
23PHU17C		C. Geo Physics	5	4

b) List of elective courses for Semester - VI:

*Minimum of 15 students must be admitted in an elective course.

*Elective can be offered as self-study courses.

Course Code	Semester	Course	Hours per Week	Credits
23PHU23A		Basic Concepts of C, C++	5	4
23PHU23B	VI	Applied Instrumentation	5	4
23PHU23C		Smart Materials	5	4

c) Courses for Skill Enhancement:

Course Code	Semester	Course	Hours per Week	Credits
23SEPHU01	IV	Energy Resources	3	2
23SEU02	V	Life Skills (Jeevan Kaushal) (Curriculum as recommended by	3	2

		UGC)		
23SEPHU03	VI	Programming in C, C++ - Practical	3	2

d) Courses for Ability Enhancement:

Course Code	Semester	Course	Hours per Week	Credits
23AEU01	III	Information Security	2	2
23AEU02	IV	Consumer Rights (Curriculum as recommended by UGC)	2	2

e) Course for Proficiency Enhancement:

Course Code	Semester	Course	Hours per Week	Credits
23PEU01	V	Lasers (Self-Study)	Self Study No instructional Hours	2

f) Courses for Competency Enhancement:

Semester	Course	Hours per Week	Credit
I - VI	NSS/YRC/RRC/CCC/PHY.EDU/ Others	Self-Paced with	1
I - VI	Professional Grooming	Faculty mentoring and Support	1
I - VI	Students Social activity (Related to the Curriculum)	Faculty mentoring and Support	1

Total Credits: 140 credits

Total Marks: 3700

SYLLABUS

(For those admitted from the academic Year 2023-24)

<u>SEMESTER – I</u>

Category	Cour Typ		Course Code	Co	urse T	itle		ntact ours	Credit (C)		
Part – III	Core	: I 2	3PHU01	ME	CHAN	ICS		72	5		
Contact h	ours pe	er week:	6								
Year		Sem	ester	Intern Mark		Externa Marks	-	То	otal Marks		
FIRST			Ι	25		75			100		
Preamble:	To pro	vide the	student's o	leeper knov	vledge	in motion o	of the	particl	es & objects		
Course Outcome: After completion of the course, the learners will be able to											
CosCourse StatementKnowledg Level								Knowledge Level			
CO1				ideas of the Hydrostatic		gement of	partic	les,	K1		
CO2	Dynan	omprehend the fundamental parameters engaged with K2 Dynamics and statics of a Rigid bodies									
CO3		investigate the concept of moment of inertia, centre of mass, friction, laws of floatation and centre of gravity									
CO4		-		-		nt rigid bod			K4		
CO5			vertex and eight of a sh		the sur	face of th	e liqu	uid,	K5		
K1 – I				•		; K4 – Ana	•				
	CO-	PO MA	APPING (C	COURSE A	RTIC	ULATION	MAJ	(RIX)	l		
POs COs		PO1	PO2	PO3	PO	4 PO:	5	PO6	6 PO7		
CO1		9	9	9	9	3		3	3		
CO2		9	9	9	9	3		3	3		
CO3		9	9	9	3	3		3	1		
CO4		9	9	3	3	3		1	1		
CO5		9	9	3	3	3		1 1			
Total Contribution of COs to P	Os	45	45	33	27	15		11 9			
Weighted Percentage COs		2.60	2.96	2.39	2.34	4 1.69	•	1.54	1.26		

			1	T	1	1	1		
Contribution to POs									
Level of corre				low correla	tion; 3 – N	fedium con	relation;		
9- High corre	lation betv	veen COs a	nd POs						
COURSE CO	NTENT								
UNIT I - Syst	em of Par	ticles				(1	15 Hours)		
Dynamics of a	system of	particles an	d concept of	of rigid bod	ies – Centr	e of mass c	oordinates		
- Centre of r	nass of rig	gid body –	Motion of	f centre of	mass and	linear mor	mentum –		
Collision – Ela	astic collisi	on – Inelast	ic collision	- Co-effici	ent of restit	ution-Roc	ket		
UNIT II - Dynamics of Rigid Bodies – I (15 Hours)									
Rigid bodies -	Rotational	kinetic ene	ergy – Mon	nent of inert	ia and its p	hysical sigr	nificance –		
Angular accele	eration – A	ngular mon	entum and	torque – A	ngular mon	nentum of s	ystem and		
centre of mass	– Conserv	ation of ang	gular mome	entum – Toi	rque – Torc	que as a cro	ss product		
of F and $r - A$	Analogy be	tween trans	latory mot	ion and rot	atory motic	on – Work	done by a		
Torque – Theo	orem of per	pendicular a	axes - Theo	rem of para	llel axes				
UNIT III - Dy	namics of	Rigid Bodi	ies – II			(1	4 Hours)		
Moment of ine	ertia of thi	ı uniform b	ar, rectang	ular lamina,	ring, circu	ılar disc, so	lid sphere		
and hollow spi	here – Kin	etic energy	of a body i	rolling on a	horizontal	plane – Ac	celeration		
of a body rollin	ng down ar	inclined pl	ane – Simp	ole pendulur	n - Compo	und pendulı	ım		
UNIT IV - Sta	atics					(1	4 Hours)		
Force of fricti	on – Limit	ting friction	n – Laws o	of friction –	Angle of	friction and	l resultant		
reaction – Cor	ne of friction	n – Motion	of a body	on a rough	inclined pl	ane when (i) angle of		
inclination of	the inclined	1 plane is e	qual to ang	le of frictio	n and (ii) a	ngle of inc	lination of		
the inclined pl	ane is grea	ter than the	angle of fr	riction - Cer	ntre of grav	vity – Expre	essions for		
centre of gravi	ty in the ca	se of a solic	l cone, soli	d hemispher	re and hollo	w hemisph	ere		
UNIT V - Hyd	drostatics					(1	4 Hours)		
Definition and	determinat	tion of cent	re of pressu	re – Genera	ıl case – Ex	pression fo	r centre of		
pressure of rec	ctangular la	amina with	one side of	n the surfac	e of the lic	quid – Expr	ression for		
centre of pressure of a triangular lamina in the case of (i) vertex in the surface of the liquid									
and (ii) base i	and (ii) base in the surface of the liquid – Laws of floatation – Definition for metacentre								
and metacentri	ic height –	Determinati	on of meta	centric heig	ht of a ship)			

Text Books

1. Mechanics - D.S.Mathur, 1st Edition, 2001, S.Chand &Co (Unit 1, 2, 3)

 Mechanics – Subramanium, Jayaraman, Rangarajan, 1990, S. Viswanathan Private Ltd., (Unit 4, 5)

Web References

UNIT I

https://link.springer.com/chapter/10.1007/978-3-030-15195-9_6

https://cnx.org/contents/MymQBhVV@175.14:vnF5wOxO@4/Center-of-mass-and-rigid-bodies

https://www.sparknotes.com/physics/linearmomentum/conservationofmomentum/section1/

http://hyperphysics.phy-astr.gsu.edu/hbase/elacol.html

https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/9-7-rocket-propulsion/

UNIT II

http://www.southampton.ac.uk > courses > chapter2

https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/10-5-calculating-

moments-of-inertia/

UNIT III

https://courses.lumenlearning.com/physics/chapter/16-4-the-simple-pendulum/

http://farside.ph.utexas.edu/teaching/301/lectures/node141.html

UNIT IV

https://en.wikipedia.org/wiki/Friction

http://ecoursesonline.iasri.res.in/mod/page/view.php?id=3630

http://ecoursesonline.iasri.res.in/mod/page/view.php?id=125339

https://semesters.in/co-efficient-of-friction-angle-of-friction-angle-of-limiting-friction-

angle-of-repose-cone-of-friction/

https://www.youtube.com/watch?v=jEy00Kn2wTA

https://unacademy.com/lesson/com-of-hollow-and-solid-hemisphere-in-hindi/OL1V1WZW

UNIT V

https://en.wikipedia.org/wiki/Center_of_pressure_(fluid_mechanics)

http://ecoursesonline.iasri.res.in/mod/resource/view.php?id=95303

https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)

 $/01\%3A_Centers_of_Mass/1.02\%3A_Plane_Triangular_Lamina$

https://www.jagranjosh.com/general-knowledge/what-are-the-laws-of-floatation-

1518096369-1

https://en.wikipedia.org/wiki/Metacentric_height

https://www.youtube.com/watch?v=ihWPnQsNCL4

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: II	23PHU02	Properties of Matter & Sound	72	5

Contact h	ours	per week: 6				
Year		Semester	Internal Marks	External Marks	T	Cotal Marks
FIRST		Ι	25	75		100
		aim is to identify the ic principles of acous		matter in terms th	neir p	roperties and
Course O	utcon	ne: After completion	of the course, the	learners will be al	ble to)
COs		Co	ourse Statement			Knowledge Level
CO1 define the terms Elasticity, Stress, Strain, Poisson's ra Cantilever, Rigidity modulus, Young's modulus, Sur Tension, Viscosity recall the concepts in Acoustics						K1
 interpret the different kinds of moduli via experiment methods and fundamentals of surface tension CO2 discuss the theories related to viscosity understand the wave phenomena, in general and sound wave particular 						К2
CO3	 work on the experimental design and studies on project topics such as Young's modulus for different types of wood variation of surface tension for different detergents Viscosity of different types of ink and to arrive a 					K3
CO4	anal mate diffe liqui com the l anal acou	of een	K4			
CO5	evalue appl	and	K5			
K1 –		mber; K2 – Unders	tand; K3 – Apply	y; K4 – Analyze;	K5 -	- Evaluate
	C	D-PO MAPPING (C	COURSE ARTIC	ULATION MAT	RIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	1	0	0
CO2	9	9	9	9	3	3	0
CO3	9	9	9	9	3	3	9
CO4	9	3	9	9	9	0	9
CO5	9	3	9	3	9	0	1
Total Contributio n of COs to POs	45	33	45	39	25	6	19
Weighted Percentage of COs							
Contributio n to POs Level of corre	2.60	2.17	3.27	3.38	2.81	0.84	2.67

9- High correlation between COs and Pos

COURSE CONTENT

UNIT I – Elasticity

Hooke's law - Stress – strain diagram – Elastic Moduli Poisson's Ratio - Relation between elastic constants - Torsion of a body – Expression for torque per unit twist – Twisting couple on a wire – Work done in twisting - Torsional pendulum – determination of rigidity modulus of a wire Dynamic torsion method - Static torsion method (Searle's apparatus - Scale and telescope)

UNIT II - Bending of beams

Expression for bending moment - Cantilever – Expression for depression at the loaded end - oscillations of a Cantilever - Expression for time period - Determination of Young's modulus by cantilever oscillations Non uniform bending - Determination of young's modulus by Koenig's method - Uniform bending - Expression for elevation – Determination of young's modulus using pin and microscope method

UNIT III - Surface tension

Definition and dimensions of surface tension - Surface tension and surface energy, molecular theory, angle of contact, elevation and depression of liquid columns in a capillary tube, excess pressure in a spherical bubble and spherical drop. Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles variation of surface tension with temperature - Jaegar's method

UNIT IV - Hydrodynamics and Viscosity

Equation of continuity – Energy of the liquid – Euler's equation for unidirectional flow – Bernoulli's theorem – Explanation and Applications of Bernoulli's theorem Coefficient of Viscosity – Poiseuille's formula for the flow of a liquid through a capillary tube –

(15 Hours)

(14 Hours)

(15 Hours)

(14 Hours)

Corrections to Poiseuille's formula – Searle's viscometer: Rotating cylinder method of finding coefficient of viscosity – Modification of Poiseuille's formula for gases

UNIT V - Sound

(14 Hours)

Laws of Transverse vibrations in strings-Determination of frequency by Melde's method -Musical Sound and Noise-Characteristics of' Musical Sound-Intensity of Sound - Acoustics - Reverberation - Sabine's Reverberation formula - Determination of Absorption coefficient - Newton's Formula for velocity of sound –Effect of Temperature, Pressure, Humidity, Density of medium and Wind – Speech– Factors Affecting the Acoustics of Buildings – Sound distribution in an Auditorium – Requisites for good acoustics – Ultrasonics - Piezo-

electric effect and Magnetostriction effect - Production of Ultrasonics by Piezoelectric oscillator and Magnetostriction oscillator- Detection and Applications of Ultrasonic waves **Text Books**

- 1. Properties of matter Brijlal& N. Subrahmanyam, 2001, S.Chand& Co. Ltd., (Unit 1, 2, 3, 4)
- 2. A Text Book of Sound Brijlal& N. Subramanyam, 2008, Vikas Publishing. Pvt.Ltd., (Unit 5)

Reference Books

- 1. Fundamentals of Physics D Halliday, R Resnick and J Walker, 6th Edition,2001, Wiley NY
- 2. Properties of matter Brijlal& N. Subrahmanyam, 2001, S.Chand& Co. Ltd.,
- 3. Elements of Properties of matter- D.S. Mathur, Revised edition, 2010, S. Chand & Co
- 4. Properties of matter Murugeshan, 2004, S Chand & Co. Pvt. Ltd.,
- 5. A Text Book of Sound, R.L. Saihgal, 1979, S. Chand & Co. Pvt. Ltd.,

Web References

- 1. www.khanacademy.org/science/physics/elasticity/surface tension
- 2. https://nptel.ac.in/courses/105/105/105105177/
- 3. https://nptel.ac.in/courses/103/102/103102016/
- 4. https://sites.google.com/brown.edu/lecture-demonstrations/home?authuser=0
- 5. https://nptel.ac.in/courses/112/104/112104176/

Category	Course Type	Course Code	Course T	Conta Hour		Credit (C)			
Part – III	Core: III Allied: I	23PHU03	MATHEMATICS - I		60		5		
Contact hours per week: 5									
Year	Year Semester		Internal Externa Marks Marks		Total Mark		otal Marks		
FIRST		Ι	25	75			100		
		the students to transforms and	learn about matric Fourier series	ces and dete	rminants	s, di	ifferent types		
Course Outcome: After completion of the course, the learners will be able to									
COs		Co	ourse Statement				Knowledge		

							Lev	vel (RBT)		
CO1	recall the definition Laplace, invertion							K1		
CO2	explain the op standard funct Fourier series	tions of Lag		-		and		K2		
CO3	apply the cond series of funct solve the prob	tions, Lapla		• •				K3		
CO4	analyze Cram hyperbolic fur							K4		
CO5	transforms, Matrices, Reciprocal Equations and Fourier series									
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluat										
	CO-PO MA	APPING (C	COURSE A	RTICULA	ATION MA	ATRIX	K)			
POs COs	PO1	PO2	PO3	PO4	PO5	PC)6	PO7		
C01	9	9	9	9	3	3		3		
CO2	9	9	9	9	3	3		3		
CO3	9	9	9	9	3	3		3		
CO4	9	9	9	9	1	1		1		
CO5	9	9	3	3	0	0		0		
Total Contribution of COs to P		45	39	39	10	1()	10		
Weighted Percentage										
COs Contributi to POs		2.96	2.83	3.38	1.12	1.4		1.40		
				ow correla	ntion; 3 – N	lediur	n cor	relation;		
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos										

COURSE CONTENT

UNIT I: MATRICES, DETERMINANTS

(12 Hours)

Definition of a matrix- Order of a matrix – Types of a matrix – Matrix operations I:A System of Linear Equations – Determinants- Cramer's Rule – Matrix Operation II: Inverse

of a matrix -Rank of matrix .

UNIT II: THEORY OF EQUATIONS

(12 Hours)

Polynomial Equations with real coefficients - Irrational roots, complex roots -Reciprocal Equations - Newton's method to find a root approximately.

UNIT III: LAPLACE TRANSFORMS

Definition – Laplace Transform of Standard functions – Linearity property – First shifting theorem – Transform of tf(t), f(t)/t.

UNIT-IV: INVERSE LAPLACE TRANSFORMS

Inverse Laplace transforms of standard functions - First shift theorem - Laplace Transform of derivatives and integrals.

UNIT V: FOURIER SERIES

Fourier series of functions in $(0, 2\pi)$ and $(-\pi, \pi)$.

NOTE: Distribution of Marks: Problem 100%.

TEXT BOOKS

1. Navnitham. P.A.(2012) - "Business mathematics and statistics", Jai publishers, TRICHY.

- 2. Kandasamy. P, Thilagavathi. K(2012) "ALLIED MATHEMATICS", Paper-I, S.Chand and Company Ltd, New Delhi.
- 3. Kandasamy. P, Thilagavathi. K "MATHEMATICS for B.Sc- Volume III(2004) and Volume IV(2005)", S. Chand and Company Ltd, New Delhi.

UNIT	BOOK	CHAPTER	VOLUME	PAGE NO
_	-		_	
Ι	1	4	Ι	147-188
II	2	1,2,3	Ι	39-47,56-71
III	3	1	III	187-201
IV	3	1	III	202-225
V	3	1	IV	93-134

REFERENCE BOOKS

- 1. Manickavasagam Pillai.T.K.and Narayanan.S(2012) "Trigonometry" Viswanathan Publishers and Printers Pvt. Ltd.
- 2. Manickavasagam Pillai.T.K.and Narayanan.S., Hanumantha Rao.R(2011) "Ancillary Mathematics", Volume-II Viswanathan Publishers and Printers Pvt.Ltd.

(12 Hours)

(12 Hours)

(12 Hours)

WEB REFERENCES:

- 1. <u>https://en.wikipedia.org/wiki/Inverse_Laplace_transform</u>
- 2. <u>https://youtu.be/5nNPf_EB7Es</u>
- 3. <u>https://nptel.ac.in/courses/111/107/111107112/</u>

Category	Course Type	Course Code	Co	urse Tit	tle	Contac Hours	t c	Credit (C)	
IV	Foundati on Course: I	23FCU01	Environmental studies (Curriculum as recommended by UGC)		24		2		
Contact ho	ours per w	eek: 2							
Year		Semester	Intern Mark		Externa Marks		Total	Marks	
FIRST		II	50					50	
Preamble:	To bring a	bout an awarer	ness of a var	iety of e	environmen	ntal conce	erns a	nd to	
create a pro-environmental attitude and a behavioural pattern in society that is based on creating sustainable lifestyle									
Course Outcome: After completion of the course, the learners will be able to									
COs Course Statement							K	nowledge Level	
CO1	CO1 define environment, ecosystem, biodiversity, environmental pollution and social issues								
CO2	classificati	e natural resour ion of India, ca ms related to th	uses of envi					K2	
CO3		e information r to protect it	elated to en	vironme	ent and the			К3	
CO4	the ecosys	e classification tem, threats to information te	biodiversity	, disaste	er manager	nent and		K4	
CO5	assess the	environmental	issues with	a focus	on sustaina	ability		K5	
K1 – F	Remember	; K2 – Unders	tand; K3 –	Apply;	K4 – Ana	lyze; K5	– Eva	aluate	
	СО-РО	MAPPING (C	COURSE A	RTICU	LATION	MATRI	X)		
POs COs	PO1	PO2	PO3	PO4	PO5	5 PO6 PO7			
CO1	9	9	9	9	3	,	3	3	

CO2	9	9	9	9	3	1	3
CO3	9	9	9	9	1	1	3
CO4	9	9	9	9	1	1	3
CO5	9	9	3	3	1	1	3
Total Contributio n of COs to Pos	45	45	39	39	9	7	15
Weighted Percentage of COs Contributio n to Pos	2.60	2.96	2.83	3.38	1.01	0.98	2.11
							X A

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

COURSE CONTENT

UNIT I

Multidisciplinary Nature of Environmental Studies:

Environment: Definition, Components, Segments and Types. **Natural Resources:** Meaning, Components: (1. **Forest**-Meaning, Importance and Types 2. **Water**- Meaning, Types and Problems 3. **Mineral**- Meaning and Classification 4. **Food** -Meaning and Problems 5. **Energy** - Meaning, Forms and Types 6. **Land** - Meaning, Structure and Functions, Components), **Classification**: Renewable and Non-Renewable Resources, Role of an Individual in Conservation of Natural Resources

UNIT II

(5 Hours)

(4 Hours)

Ecosystems – Definition, Features, Structure and Function of an Ecosystem, Producers, Consumers and Decomposers, Energy Flow in the Ecosystem (Water, Carbon, Nitrogen, Oxygen and Energy), Food Chains, Food Webs and Ecological Pyramids

Introduction Types, Characteristics Features, Structure and Function of the following Ecosystem:

- Forest Ecosystem
- Grassland Ecosystem
- Desert Ecosystem
- Aquatic Ecosystems (Ponds, Streams, Lakes, Rivers, Ocean, Estuaries)

UNIT III

(5 Hours)

Biodiversity and its Conservation: Introduction – Definition – Genetic, Species and Ecosystem Diversity, Biogeographical Classification of India -Value of Biodiversity – Consumptive Use, Productive Use, Social, Ethical, Aesthetic and Option Value-Biodiversity at Global, National and Local Levels- India as a Mega-Diversity Nation- Hot-Spots of Biodiversity- Threats to Biodiversity – Habitat Loss, Poaching of Wildlife, Man-Wildlife Conflicts- Endangered and Endemic Species of India Conservation of Biodiversity

UNIT IV (5 Hours) Environmental Pollution: Definition, Causes, Effects, control measures and Prevention Acts for Air, Water, Soil, Noise, Thermal Pollutions and Nuclear Hazards. Solid Waste Management: Meaning, Causes, effects and control measures of urban andindustrial wastes.Disaster Management: Meaning, Types of Disasters: floods, earthquake, cyclone and landslides.Environmental Ethics: Issues and possible solutions- Climate change, global warming, acid rain, ozone layer depletion, nuclear - accidents and holocaust. Consumerism and waste products, Public Awareness

UNIT V

Social Issues and the Environment: From Unsustainable to Sustainable development-Urban problems related to energy- Water conservation, rain water harvesting, watershed management- Resettlement and rehabilitation of people; its problems and concerns

Human Population and the Environment: Population growth and distribution-Population explosion – Family Welfare Programme-Environment and human health-HIV/AIDS- Role of Information Technology in Environment and human health- Medical transcription and bio-informatics

Reference Books

- 1. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad
- 3. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 4. Clark R.S., Marine Pollution, Clanderson Press Oxford (TB)
- 5. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001,
- 6. Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- 7. De A.K., Environmental Chemistry, Wiley Eastern Ltd.

- In-situ and Ex-situ and Conservation of Biodiversity

- 8. Down to Earth, Centre for Science and Environment (R)
- 9. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev.,
- 10. Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- 11. Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural
- 12. History Society, Bombay (R)
- 13. Heywood, V.H & Waston, R.T. 1995. Global Biodiversity Assessment, Cambridge Univ. Press 1140p.
- 14. Jadhav, H & Bhosale, V.M. 1995. Environmental Protection and Laws, Himalaya Pub. House, Delhi 284 p.
- 15. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition. 639p.
- 16. Mhaskar A.K., Matter Hazardous, Techno-Science Publication (TB)
- 17. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- 18. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 19. Rao M N. & Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publ.Co. Pvt. Ltd. 345p.
- 20. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut
- 21. Survey of the Environment, The Hindu (M)
- 22. Townsend C., Harper J, and Michael Begon, Essentials of Ecology, BlackwellScience (TB)

(5 Hours)

<u>SEMESTER – II</u>

Category	Course Type	Course Code	Co	urse Title			ntact ours	Credit (C)			
Part – III	Core: IV	23PHU04		IEAT & ODYNAN	AICS	(50	4			
Contact h	ours per w	eek: 5									
Year		Semester	Interna Mark		Externa Marks		Т	Total Marks			
FIRST		II	25		75			100			
		nt acquires the ferent analysis				-					
thermal energy by different analysis and to provide the basic knowledge of thermodynamicsCourse Outcome: After completion of the course, the learners will be able to											
COs		Knowledge Level									
CO1	tific tion k's,	K1									
Wein's, Rayleigh-Jean's and Joule-Thomson Effect.CO2Summarize the terms of Thermometer, Calorimeter, Viscosity of gases, Thermal conductivity, Thermal diffusivity, Steady state, Isothermal and Adiabatic, Entropy. Explain the Peculiar properties of He II								K2			
CO3	theories o	te the various f heat in Lique ious thermody	efaction of	air, hydro	gen and	heli	um,	K3			
CO4	U	e the various e onductivity of ycle	1		1		· ·	K4			
CO5		the specific he he critical con equation	- ·		-	•		K5			
K1 – I		; K2 – Unders	tand; K3 –	Apply; K	4 – Ana	lyze;	K5 –	Evaluate			
	СО-РО	MAPPING (C	COURSE A	RTICUL	ATION	MA	(RIX))			
POs	PO		PO3	PO4							
COs	rU	1 PO2	PO3	r04	POS	,	PO	6 PO7			
CO1	9	9	9	9	3		3	3			
CO2	9	9	9	9	3		3 3				
CO3	9	9	9	9	3		1	3			

CO4	9	9	9	3	3	1	1
CO5	9	9	3	3	3	1	1
Total Contributio n of COs to POs	45	45	39	33	15	9	11
Weighted Percentage of COs Contributio n to POs	2.60	2.96	2.83	2.86	1.69	1.26	1.54

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

COURSE CONTENT

UNIT I - Thermometry & Calorimetry

Thermometry: Temperature coefficient of Resistance — Platinum Resistance Thermometer —Thermocouple — Seebeck Effect — Peltier Effect — Thermoelectric thermometer

Calorimetry: Specific heat of solids – Radiation correction – Copper block calorimeter – Nernst vacuum calorimeter – Newton's law of cooling – Specific heat capacity of a liquid by cooling – Specific heat capacity of gases–Jolly's differential steam calorimeter and Regnault method

UNIT II - Kinetic Theory of Gases

Postulates – Mean free path – Degree of freedom –Maxwell's law of velocity distribution and Theorem of equipartition of energy – Viscosity of gases – Van der Waals equation – Critical constants and their determination Low Temperature Physics: Joule-Thomson Effect – Liquefaction of air, hydrogen and helium – Peculiar properties of He II

UNIT III - Thermal Conduction

Conduction, convection and radiation – Coefficient of thermal conductivity, thermal diffusivity – Steady state – Lee's disc method of determining the thermal conductivity of a bad conductor – Searle's method – Forbe's method – Spherical Shell method – Cylindrical flow of heat

UNIT IV - Thermal Radiation

Black body – Kirchoff's law of heat radiation – Prevost's theory of heat exchange – Stefan's law – Mathematical derivation – Derivation of Newton's law of cooling from Stefan's law – Experimental verification of Stefan's law – Distribution of energy in the spectrum of black body – Derivation of Planck's law – Derivation of Wein's law and Rayleigh-Jean's law from Planck's law

UNIT V - Thermodynamics

First law of Thermodynamics–Isothermal and Adiabatic process–gas equation during an adiabatic process– Work done on adiabatic expansion of gas–Carnot's Theorem–efficiency, Carnot's cycle – Otto Cycle–Entropy – Change in entropy (Reversible and irreversible process) – Temperature–Entropy diagram – Entropy of a perfect gas–Maxwell's

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

thermodynamic relations and applications– Helmholtz function – Gibb's function **Text Book**

1.Heat and Thermodynamics– Brijlal and Subramaniam, Revised Edition 2016, S.Chand & Co (Unit 1-5)

Reference Books

- 1. Thermal Physics– R. Murugesan, 3rd Edition, 2012, S. Chand & Co
- 2. Text book of heat– JB Rajam, 1988, S. Chand & Co

Web References

- 1. http://imran728fileswordpress.com
- 2. http://thermal-engineering.org
- 3. http://www.sfu.ca
- 4. http://topex.ucsd.edu
- 5. http://www.livescience.com

Category	Course Type	Course Code	Cou	urse Title		Conta Hour	· · · (Credit (C)		
Part – III	Core: V	23PHU05	Electricity	and Magr	netism	60		4		
Contact ho	ours per wo	eek: 5			·····					
Year	5	Semester	Interna Marks		Externa Marks	-	Total	Marks		
FIRST		II	25		75		1	00		
	-	knowledge in ws and equation	•	nd magnet	ism, pro	blem so	olving a	ability &		
Course Ou	tcome: Af	ter completion	of the cours	e, the learn	ners will	l be able	e to			
COs Course Statement								nowledge Level		
CO1	CO1 summarize the laws of electricity and magnetism									
CO2	magnetic r	the techniqu naterials and d	ynamics of c	charged pa	rticles	-	·	K2		
CO3	principles	ne learned cond in day to day li	ife					K3		
CO4	•	e different for Helmholtz e ctricity		•		-		K4		
CO5	determine of material	the motion of s	charged par	ticles, mag	gnetic p	ropertie	S	K5		
K1 – F	Remember;	K2 – Unders	tand; K3 –	Apply; K	4 – Ana	lyze; K	5 - Eva	aluate		
	CO-PO MAPPING (COURSE ARTICULATION MATRIX)									
POs COs	PO1	PO2	PO3	PO4	POS	5 1	PO6	PO7		
CO1	9	9	9	9	3		9	9		

CO2	9	9	9	9	9	3	3
CO3	9	9	3	9	9	3	3
CO4	9	3	3	3	3	3	3
CO5	9	3	3	3	1	3	3
Total Contributio n of COs to POs	45	33	27	33	25	21	21
Weighted Percentage of COs Contributio n to POs	2.60	2.17	1.96	2.86	2.81	2.95	2.95
Level of corre	lation · 0 _	No correla	tion · 1 _ I	ow corrola	tion · 3 _ M	Indium cor	rolation

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

COURSE CONTENT

UNIT I - Electrostatics

Gauss theorem and its applications: Coulomb's law, Electric Field and potentials, Electric field due to a point charge. Normal electric induction Gauss theorem, application of gauss theorem - Energy stored in unit volume of an electric field – Electric field due to an infinite plane sheet

Capacitance and Capacitors: Spherical capacitor, cylindrical capacitor, Force of attraction between charged plates of a capacitor – capacity of a parallel plate capacitor; effect of introducing a dielectric slab between the plates - polarization in dielectric materials

UNIT II - Magnetic Properties of materials (12 Hours) Electron theory of magnetism; dia, para, ferromagnetism and their properties - magnetic field B - magnetization M - magnetic field intensity H - magnetic susceptibility and magnetic permeability - magnetic materials and magnetization -magnetic hysteresis – area of the hysteresis loop- determination of susceptibility : Guoy's method – magnetic circuits – circuits comparison of magnetic application with electrical circuits

UNIT III - Thermo Electricity

Seebeck effect – Laws of thermo e.m.f – Peltier effect- Peltier Coefficient – determination of Peltier co-efficient – thermo dynamical consideration of Peltier -effect – Thomson effect – Thomson Co-efficient – e.m.f generated in a thermocouple taking both Peltier -effect and Thomson effect in the metals – Thermo electric power – Application of thermodynamics to Thermocouple – Thermoelectric diagrams and their uses

UNIT IV- Helmholtz equation of varying current

Growth and decay of current in an inductive – resistive circuit – charging and discharging of a capacitor through a resistance – charging and discharging of capacitor through an inductance – oscillatory circuits- Force on a current carrying conductor – Theory of Ballistic Galvanometer

UNIT V - Dynamics of charged particles

Charged particles in uniform and constant electric field – Charged particles in an alternating electric field – Charged particles in a uniform and constant magnetic field – charged

(12 Hours)

(12 Hours)

(12 Hours)

(**12 Hours**) tials, Electric

particles in combined electric and magnetic field when the fields are parallel and are in mutually perpendicular direction. A conducting rod moving through a uniform magnetic field – inductance in series – in parallel – self inductance of coaxial cylinders – self inductance of toroidal coil of rectangular cross section – circular cross section – Grassot flux meter – comparison with Ballistic galvanometer – rotating magnetic field

Text Books

- 1. Electricity and Magnetism Brijlal and Subramaniam, 1994, The National Publishing Company (Unit 1-5)
- Electricity and Magnetism R. Murugesan, 4 th Edition, 1997, Shoban Lal Nagin CHAND & Co. (Unit 1-5)

Reference Books

- 1. Electricity and Magnetism D.N. Vasudeva, Edition 1999, S. Chand & Company Ltd.
- 2. Electricity and Magnetism Nagarathanam and Lakshminarayanan
- 3. Fundamental of Electricity and Magnetism B.D.Duggal and C.L. Chhabra
- 4. Mechanics D.S. Mathur, Edition 1998, S. Chand & Company Ltd.,

Web References

- 1.https://www.askiitians.com/revision-notes/physics/current-electricity.html
- 2.https://www.askiitians.com/revision-notes/physics/electromagnetic-induction-andalternating-current/
- 3. https://byjus.com/physics/electricity-and-magnetism/

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: VI Allied: II	23PHU06	MATHEMATICS - II	60	5

Contact hours per week: 5

Year		Semester	Internal Marks	External Marks	Т	otal Marks
FIRST	ר	II	25	25 75 100		100
Preamble curvature,	deas	about				
Course O	utcom	e: After completion	of the course, the	learners will be a	ble to)
COs		Co		Knowledge Level		
CO1	CO1 recall the basic concepts of curvature ,differentiation and integration .					
CO2	-	ess radius of curvatur ma functions, ordinar		K2		
CO3		y the formula for Bet re of curvature for fi		ons, radius and		K3

CO4	analyze the general of ordinary, partial differential equations, Beta - Gamma functions and change of order of integrations	K4
CO5	Evaluation of multiple integrals and differential equations.	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	3	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	3	3
Total Contribution of COs to POs	45	45	45	45	15	15	15
Weighted Percentage of COs Contribution	2.60	2.96	3.27	3.90	1.69	2.10	2.11
to POs					,		

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

COURSE CONTENT

UNIT I: CURVATURE

Curvature - Radius of curvature - Center of curvature - Circle of curvature

UNIT II: INTEGRATION

Evaluation of double integrals - Change of order of integration in double integrals -Evaluation of triple integrals .

UNIT III:BETA AND GAMMA FUNCTIONS

Beta and Gamma functions – Relations between Beta and Gamma functions –

Evaluation of multiple integrals using Beta and Gamma functions.

UNIT IV: ORDINARY DIFFERENTIAL EQUATIONS

Solving second order linear differential equations with constant coefficients whose R.H.S is of the form ve^{mx}, where v is any function of x-to find the meanings for

 $f(D^2)sin(ax+b)$ and $f(D^2)cos(ax+b)$.

UNIT V:PARTIAL DIFFERENTIAL EQUATIONS

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Formation of partial differential equations by elimination of arbitrary constants and functions -Definitions of general, particular and complete solutions - Solving standard forms f(p, q) = 0.

Note: Distribution of Marks: Theory 20% Problem 80% TEXT BOOKS

- Kandasamy. P, Thilagavathi.K.(2004) "Mathematics for B.Sc. Branch I", 1st edition, Volume II and III, S.Chand and Company Ltd, New Delhi.
- 2. Narayanan.S. and Manicavachasam Pillai.T.K (2017) "Calculus Volume II"-Viswanathan Publishers.

UNIT	BOOK	CHAPTER	VOLUME	PAGE NO
I	1	II	II	324-344
II	1	VI	II	432-444
	2			270.205
III	2	VIII	II	278-295
IV	1	II	III	16-35
V	1	Ι	III	117-136

REFERENCE BOOK

1. Narayan.S and Manicavachagam Pillay.T.K. (1993) - "Ancillary Mathematics",

Viswanathan Publishers and Printers Pvt. Ltd.

WEB REFERENCES

- 1. <u>https://en.wikipedia.org/wiki/Beta_function</u>
- 2. https://users.aber.ac.uk/ruw/teach/260/classification.php

Category	Course Type	Course Code	Course T	ïtle	Contact Hours	Credit (C)			
Part – III	Allied	23MAU03	ALLIED PHYSICS – I		60	4			
Contact hours per week: 5									
Year		Semester	Internal Marks	Externa Marks		otal Marks			
FIRST		Ι	25	75		100			
Preamble:	Preamble: To understand the fundamentals of physics, give the basic understanding of								

material pr	operties and to	acquire kno	owledge on	magnetism	and electri	city			
Course Ou	itcome: After of	completion	of the cour	se, the learn	ners will be	able to)		
COs		Co	ourse State	ment			Knowledge Level		
CO1	elastic proper	remember the basic terms of universal law of gravitation ar elastic properties of solids, sound propagation, solar energy electric and magnetic fields							
CO2	discuss the fur liquids and va				te propertie	es for		K2	
CO3	examine the conversions of				g moment	and		K3	
CO4		categorize techniques related with fabrication of solar cell, measurement of solar radiations.							
CO5	assess the abending method		K5						
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate									
CO-PO MAPPING (COURSE ARTICULATION MATRIX)									
POs COs	PO1	PO2	PO3	PO4	PO5	РО	6	PO7	
C01	9	9	9	9	9	9		3	
CO2	9	9	9	9	9	3		3	
CO3	9	3	3	3	3	3		3	
CO4	9	3	3	3	3	3		1	
CO5	9	3	3	1	1	1		1	
Total Contribut n of COs Pos	45	33	33	25	25	19)	11	
Weighted Percentag of COs Contribut n to POs	2.31	1.78	2.00	1.62	2.80	2.1		1.49	

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POSs

COURSE CONTENT

UNIT I

Gravitation: Newton's law of Gravitation-Determination of G by Boy's method- mass and density of earth – acceleration due to gravity- Determination of g by compound pendulum **Elasticity:** Bending of beams - Bending moment - Depression at the free end of a cantilever

(12 Hours)

- Hooke's law - Kinds of moduli of Elasticity - Experimental determination of Young's Modulus by Uniform and Non-Uniform bending methods

UNIT II

(12 Hours)

Heat and Thermodynamics: Vanderwaal's equation of state-critical constants of a gasderivation of critical constants in terms of Vanderwaal's contants – Theory of porous plug experiment - Joule-Kelvin effect: Temperature of inversion - Liquefaction of air (Linde's process) - Liquefaction of hydrogen - Liquefaction of Helium - Properties of liquid Helium I and Helium II - Second law of thermodynamics - Carnot's theorem and its proof

UNIT III

(12 Hours)

Sound: Transverse waves – velocity along a stretched string-laws of transverse vibration of strings verification of laws- Melde's string - Determination of frequency of a tuning fork (Transverse and longitudinal modes) - Frequency of AC by sonometer- Production of ultrasonic waves by piezo-electric method - Applications of Ultrasonic Waves

UNIT IV

(12 Hours)

Solar Physics: Solar constant – measurement of solar radiations by Pyroheliometer and Pyranometer - general applications of solar energy - flat-plate collector - box type cooker solar water heaters – solar photo – voltaic cells – general applications of solar cells

UNIT V

(12 Hours) Electricity: Moving coil Galvanometer - Conversion of Galvanometer into Ammeter and voltmeter -Ballistic Galvanometer - construction and theory - Electromagnetic induction -Transformers – theory, energy loss and applications

Magnetism: Basic concepts of magnetic materials – magnetic properties of Dia, Para and Ferro magnetic materials- Antiferro magnetism and Ferri magnetism - electric and magnetic circuits – Curie temperature

Text Books

- 1. Properties of Matter and Sound R. Murugesan, 1998, S.Chand & Company Pvt. Ltd., (Unit 1)
- 2. Heat and Thermodynamics Brijlal and Subramaniam, 2012, S.Chand & Company Pvt. Ltd., (Unit 2)
- 3. Sound Brijlal and Subramaniam, 1994, Vikas Publishing House Pvt. Ltd., (Unit 3)
- 4. Solar physics G.D. Rai,2012, Khanna Publishers New Delhi (Unit 4)
- 5. Electricity and Magnetism Brijlal and Subramanyam, 2011, Vikas Publishing House Pvt. Ltd., (Unit 5)

Web References

- 1. https://web.njit.edu/~vitaly/121/notes121.pdfhttps://ncert.nic.in > textbook > pdf > iesc110
- 2. https://www.stcharlesprep.org > Elasticity(statics)
- 3. https://books.google.co.in/books?id=0zP8wAEACAAJ&printsec=copyright
- 4. https://ncert.nic.in/ncerts/l/iesc112.pdf
- 5. http://science.sciencemag.org/content/245/4919/770.1.full.pdf
- 6. https://web.njit.edu/~vitaly/121/notes121.pdf

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Allied	23MAU06	ALLIED PHYSICS – II	60	4

Contact he	ours j	per week	: 5						
Year		Sem	lester	Intern Mark		External Marks	1	[otal	Marks
FIRST	I		II	25		75		1	00
Preamble:	To p	provide the	e theoretical	basis for t	he unders	tanding of phy	ysical	mea	surement
methods an	nd to	understan	d the optica	l, nuclear a	nd electro	onic properties	of so	lids	
Course Ou	itcon	ne: After o	completion	of the cour	se, the lea	arners will be a	ible to)	
COs			Co	urse State	ment				nowledge Level
CO1		nember the basic concepts in Matter waves, Nuclear forces, nciples of lasers, Semiconductor devices, Number system							
CO2	ener	blain the fundamentals of De Broglie's matter wave, Binding ergy, conditions for laser actions, characteristics of Semi- nductors, laws of Boolean algebra K2							
CO3		scuss the working techniques of photoelectric cells, logic gate K3 cuits, Semiconductor devices							
CO4		letermine the concepts of photoelectric equation, Nuclear K4 tructure, Raman effect							
CO5	estimate the Particle accelerator, Lasers, Rectifiers circuits, k5 various semiconductor devices								
K1 – I	Reme	ember; Kž	2 – Underst	tand; K3 –	Apply; I	K4 – Analyze;	; K5 -	- Eva	aluate
	C	O-PO MA	APPING (C	COURSE A	RTICUI	LATION MA	TRIX	()	
POs COs		PO1	PO2	PO3	PO4	PO5	PO	6	PO7
C01		9	9	9	9	9	9		9
CO2		9	9	9	9	9	9		3
CO3		9	9	9	3	9	3		3
CO4		9	3	3	3	3	3		1
CO5		9	3	3	1	3	3		1
Total Contribut n of COs t POs		45	33	33	31	33	27	7	17
Weighted Percentag of COs Contribut n to POs		2.31	1.78	2.00	2.01	3.69	3.0)2	2.31

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

COURSE CONTENT

UNIT-I (12 Hours) Modern physics: Einstein's photo electric equation – verification of Einstein's photo electric equation by Millikan's experiment – photo electric cells – applications Wave mechanics: De Broglie concept of matter waves - Calculation of De Broglie wave length - Study of De Broglie matter wave by G.P.Thomson experiment UNIT-II (12 Hours) **Nuclear physics:** Nuclear forces – nuclear structure by liquid drop model – Binding energy -mass defect - particle accelerators - cyclotron - nuclear Fission and nuclearFusion -Nuclear Fission reactors - introduction to elementary particles - Leptons, Mesons and Baryons **UNIT III** (12 Hours) **Laser physics:** Principles of laser – population inversion – Meta stable state – Spontaneous and Stimulated Emission - conditions for laser actions - Ruby Laser - Helium - neon laser - applications of lasers - Raman Effect - Raman shift- stoke and anti stokes lines **UNIT IV** (12 Hours) Semiconductor Devices: Semi conductors - Energy band in Solids - Types of Semi conductors - PN junction Diode - Volt-Ampere Characteristics - Zener diode - Volt-Ampere Characteristics – Rectifiers – Half wave rectifier – Bridge Rectifier UNIT V (12 Hours) Digital Electronics: Number systems - Binary system - Addition - Subtraction -Complement method of Subtraction-Multiplication - Division - Binary-to-decimal and decimal-to-binary conversion - AND, OR, NOT gates - NAND and NOR as universal gates - Laws of Boolean algebra – Simplification of Boolean expressions - De Morgan's theorems **Text Books** 1. Modern Physics - R. Murugesan, 2016, S.Chand& Company. Pvt. Ltd, New Delhi 2. Engineering physics-M. Arumugam, 1998, Anuradha Agencies, Educational Publishers 3. Laser Physics – Thiagaraja, 2013, Narosa Publishing House 4. Basic Electronics – B.L. Theraja, 2000, S. Chand & Company LTD, New Delhi Web References 1. http://www.ifsc.usp.br/~lavfis/images/BDApostilas/ApEfFotoeletrico/The%20Photoele ctric%20Effect%20-%20m213.pdf 2. http://www.sfu.ca/~mxchen/phys1021003/P102LN34.pdf 3. https://ehs.msu.edu > assets > docs > laser > laser-fu... 4. https://schools.aglasem.com/ncert/ncert-books-class-12-physics-chapter-14/ 5. https://www.shahucollegelatur.org.in/Department/Studymaterial/sci/it/BCA/FY/digielec .pdf

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Allied	23MAU07	ALLIED PRACTICAL	72	4

Contributio n of COs to POs45453327331311Weighted Percentage of COs2.312.432.001.753.691.451.49	Contact h	ours per	week	3								
Preamble: The aim of the course is to develop practical skills in mechanical, electrical, neat and optics experimentsCourse Outcome: After completion of the course, the learners will be able toCOsCourse Outcome: After completion of the course, the learners will be able toCO1identify the basic principle and working of Pendulum, Spectrometer, PotentiometerK1CO2demonstrate the construction and working model of different experimentsK2CO3use the mathematical formulas to calculate the quantitative evaluate the different set of values from the experimentsK4CO5interpret the values obtained from performed experimentsK5K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – EvaluateCO-PO MAPPING (COURSE ARTICULATION MATRIX)PO8PO1PO2PO3PO4PO5PO6PO7CO199993331CO39993331CO4993331CO5993331CO5993331CO5993311CO5993311CO5993311CO5993311CO5993311CO5993311<	Year		Sem	lester					Г	otal	Marks	
meat and optics experimentsCourse Outcome: After completion of the course, the learners will be able toCourse StatementKnowledge LevelCO1identify the basic principle and working of Pendulum, Spectrometer, PotentiometerK1CO2demonstrate the construction and working model of different experimentsK2CO3use the mathematical formulas to calculate the quantitative results obtained from various experimentsK3CO4evaluate the different set of values from the experimentsK4CO5interpret the values obtained from performed experimentsK5CO-PO MAPPING (COURSE ARTICULATION MATTEX)POs CO3PO1PO2PO3PO4PO5PO6PO7CO19999333CO2999933CO4PO1PO2PO3PO4PO5PO6PO7CO19999333CO29999333CO2999933CO49099933CO-PO MAPPING (COURSE ARTICULATION MATTEX)PO5PO6PO7CO19993331CO2993	FIRST		Ιd	& II	50			50		1	100	
meat and optics experimentsCourse Outcome: After completion of the course, the learners will be able toCourse StatementKnowledge LevelCO1identify the basic principle and working of Pendulum, Spectrometer, PotentiometerK1CO2demonstrate the construction and working model of different experimentsK2CO3use the mathematical formulas to calculate the quantitative results obtained from various experimentsK3CO4evaluate the different set of values from the experimentsK4CO5interpret the values obtained from performed experimentsK5CO-PO MAPPING (COURSE ARTICULATION MATTEX)POs CO3PO1PO2PO3PO4PO5PO6PO7CO19999333CO2999933CO4PO1PO2PO3PO4PO5PO6PO7CO19999333CO29999333CO2999933CO49099933CO-PO MAPPING (COURSE ARTICULATION MATTEX)PO5PO6PO7CO19993331CO2993	Preamble:	The ain	n of the	course is t	o develop p	ractica	l skil	ls in mecha	nical,	elect	rical,	
COsKnowledge LevelCO1identify the basic principle and working of Pendulum, Spectrometer, PotentiometerK1CO2demonstrate the construction and working model of different experimentsK2CO3use the mathematical formulas to calculate the quantitative results obtained from various experimentsK3CO4evaluate the different set of values from the experimentsK4CO5interpret the values obtained from performed experimentsK5CO-PO MAPPING (COURSE ARTICULATION MATRIX)POsPO1PO2PO3PO4PO5PO6PO7CO1999933CO2999933CO3999331POsPO1PO2PO3PO4PO5PO6PO7CO19993331POSPO1PO2PO3PO4PO5PO6PO7CO199933311POSPO1PO2PO3PO4PO5PO6PO7CO19933311POSPO933311POS9933311POSPO993311POSPO93311POS <t< td=""><td>heat and op</td><td>ptics exp</td><td>erimen</td><td>ts</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	heat and op	ptics exp	erimen	ts								
LevelLevelCourse StatementLevelCO1identify the basic principle and working of Pendulum, Spectrometer, PotentiometerK1CO2demonstrate the construction and working model of different results obtained from various experimentsK2CO3use the mathematical formulas to calculate the quantitative results obtained from various experimentsK3CO4evaluate the different set of values from the experimentsK4CO5interpret the values obtained from performed experimentsK5CO-PO MAPPING (COURSE ARTICULATION MATRIX)Pos CO8PO1PO2PO3PO4PO5PO6PO7CO1999933CO2999933CO2999933CO4993331Interpret for performed experimentsCO-PO MAPPING (COURSE ARTICULATION MATRIX)Pos CO3PO6PO7CO199333CO2993331Interpret for performed experiments4545332733CO3993311CO5993311CO5993311Coto to PO8	Course Ou	itcome:	After o	completion	of the cours	se, the	learne	ers will be	able to)		
Spectrometer, PotentiometerNICO2Spectrometer, PotentiometerNICO2demonstrate the construction and working model of different experimentsK2CO3use the mathematical formulas to calculate the quantitative results obtained from various experimentsK3CO4evaluate the different set of values from the experimentsK4CO5interpret the values obtained from performed experimentsK5K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - EvaluateCO-PO MAPPING (COURSE ARTICULATION MATRIX)POs CO3PO6PO7CO1999O3PO4PO5PO6PO7CO1999O3PO4PO5PO6PO7CO2999O4PO5PO6PO7CO2993GO3993CO1993CO2 <th cols<="" td=""><td>COs</td><td colspan="9">Course Statement</td><td>U</td></th>	<td>COs</td> <td colspan="9">Course Statement</td> <td>U</td>	COs	Course Statement									U
N2N2R2experimentsN2use the mathematical formulas to calculate the quantitative results obtained from various experimentsK3CO4evaluate the different set of values from the experimentsK4CO5interpret the values obtained from performed experimentsK5CO-PO MAPPING (COURSE ARTICULATION MATRIX)POsPO6PO7CO1999PO3PO4PO5PO6PO7CO1999PO3PO4PO5PO6PO7CO199999PO3PO4PO5PO6PO7CO199999PO3PO4PO5PO6PO7CO299933CO29933CO3 <td>CO1</td> <td>Spectro</td> <td>ometer,</td> <td>Potentiome</td> <td>eter</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>K1</td>	CO1	Spectro	ometer,	Potentiome	eter						K1	
results obtained from various experimentsKScO4evaluate the different set of values from the experimentsK4CO4evaluate the different set of values from the experimentsK4CO5interpret the values obtained from performed experimentsK4CO5PO6 MAPPING (COURSE ARTICULATION MATRIX)POsPO6PO7CO1999PO3PO4PO5PO6PO7CO29999PO3PO4PO5PO6PO7CO19999PO3PO4PO5PO6PO7CO299933CO2999933CO299333CO399333CO39	CO2	experin	nents								K2	
CO1 interpret the values obtained from performed experiments K5 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate CO-PO MAPPING (COURSE ARTICULATION MATRIX) POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 CO1 9 9 9 9 9 3 3 CO2 9 9 9 9 9 3 3 CO2 9 9 9 9 9 3 3 CO2 9 9 9 9 9 3 3 CO3 9 9 9 9 3 3 3 CO3 9 9 9 3 3 3 1 CO4 9 9 3 3 3 1 1 Co4 9 9 3 3 3 1 1 Fotal 45 45 33 27 3.69 1.45 </td <td>CO3</td> <td>results</td> <td>obtaine</td> <td>d from vari</td> <td>ious experin</td> <td>nents</td> <td></td> <td>•</td> <td>ative</td> <td></td> <td>K3</td>	CO3	results	obtaine	d from vari	ious experin	nents		•	ative		K3	
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate CO-PO MAPPING (COURSE ARTICULATION MATRIX) POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 CO1 9 9 9 9 9 3 3 CO2 9 9 9 9 3 3 CO2 9 9 9 9 3 3 CO2 9 9 9 9 3 3 CO3 9 9 9 3 3 3 CO3 9 9 3 3 3 1 CO4 9 9 3 3 1 1 Co5 9 9 3 3 3 1 1 Fotal Contributio n of COs to POS 2.31 2.43 2.00 1.75 3.69 1.45 1.49												
CO-PO MAPPING (COURSE ARTICULATION MATRIX) POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 CO1 9 9 9 9 9 3 3 CO2 9 9 9 9 9 3 3 CO3 9 9 9 3 3 3 3 CO4 9 9 3 3 3 1 1 CO5 9 9 3 3 3 1 1 Total Contributio n of COs to POs 45 45 33 27 33 13 11 Weighted Percentage of COs Contributio n to POs 2.31 2.43 2.00 1.75 3.69 1.45 1.49	CO5	Interpre				riorine	u exp	bernments			K5	
POs COsPO1PO2PO3PO4PO5PO6PO7C019999933C029999933C039993333C04993331C05993311C05993311C05993311C05993311C05993311C05993311C05993311POs45453327331311Meighted Pos2.312.432.001.753.691.451.49	K1 – I	Rememb	oer; K2	2 – Underst	tand; K3 –	Apply	; K4	– Analyze	; K5 -	- Eva	luate	
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 CO1 9 9 9 9 9 3 3 CO2 9 9 9 9 9 3 3 CO3 9 9 9 3 3 3 3 CO4 9 9 3 3 3 1 1 CO5 9 9 3 3 3 1 1 Fotal Cos to 9 9 3 3 1 1 Fotal 45 45 33 27 33 13 11 Weighted Percentage 2.31 2.43 2.00 1.75 3.69 1.45 1.49		CO-I	PO MA	APPING (C	COURSE A	RTIC	ULA	TION MA	TRIX	()		
CO2 9 9 9 9 9 9 3 3 CO3 9 9 9 9 3 9 3 3 CO4 9 9 9 3 3 3 3 1 CO4 9 9 3 3 3 3 3 1 CO5 9 9 3 3 3 3 1 1 Total Contributio n of COs to POs 45 45 33 27 33 13 11 Weighted Percentage of COs n to POs 2.31 2.43 2.00 1.75 3.69 1.45 1.49		Р	01	PO2	PO3	РО	4	PO5	РО	6	PO7	
CO2 9 9 9 9 9 9 3 3 CO3 9 9 9 9 3 9 3 3 CO4 9 9 9 3 3 3 3 1 CO4 9 9 3 3 3 3 3 1 CO5 9 9 3 3 3 3 1 1 Total Contributio n of COs to POs 45 45 33 27 33 13 11 Weighted Percentage of COs n to POs 2.31 2.43 2.00 1.75 3.69 1.45 1.49			0	0	0	0		0	2		2	
CO3 9 9 9 3 9 3 3 CO4 9 9 3 3 3 3 1 CO4 9 9 3 3 3 3 1 CO5 9 9 3 3 3 1 1 Co5 9 9 3 3 3 1 1 Total Contributio n of COs to POs 45 45 33 27 33 13 11 Weighted Percentage of COs Contributio n to POs 2.31 2.43 2.00 1.75 3.69 1.45 1.49				-	_			-			_	
CO4 9 9 3 3 3 3 1 CO5 9 9 3 3 3 3 1 1 CO5 9 9 3 3 3 1 1 Co5 9 9 3 3 3 1 1 Total Contributio n of COs to POs 45 45 33 27 33 13 11 Weighted Percentage of COs to POs 2.31 2.43 2.00 1.75 3.69 1.45 1.49												
CO59933311Total Contributio n of COs to POs45453327331311Weighted Percentage of COs2.312.432.001.753.691.451.49					_			-	_			
Total Contributio n of COs to POs45453327331311Weighted Percentage of COs2.312.432.001.753.691.451.49	CO4		9	9	3	3		3	3		1	
Contributio n of COs to POs45453327331311Weighted Percentage of COs Contributio n to POs2.312.432.001.753.691.451.49			9	9	3	3		3	1		1	
Weighted Percentage of COs2.312.432.001.753.691.451.49Contributio n to POs100100100100100100100100		Intributio 45 45 33 27 33 13 11										
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation:	of COs Contributi n to POs	2 io										
,	Level of co	orrelatio	on: 0 –	No correla	tion; 1 – L	ow coi	relat	tion; 3 – M	lediun	n cor	relation	

9- High correlation between COs and Pos

COURSE CONTENT ANY TWELVE (12) EXPERIMENTS ONLY

- 1. Acceleration due to gravity Compound pendulum method
- 2. Moment of inertia Torsional pendulum method
- 3. Young's modulus Uniform bending Optic lever method
- 4. Young's modulus Non-uniform bending Pin and microscope
- 5. Rigidity modulus Static torsion method
- 6. Frequency of A.C Sonometer
- 7. Thermal conductivity Lee's disc method
- 8. Refractive index of a liquid prism Spectrometer
- 9. Refractive index of a liquid prism Spectrometer
- 10. (i-d) curve-solid prism Spectrometer
- 11. Wavelengths of spectral lines Grating Normal incidence Spectrometer
- 12. Wavelength of spectral lines Grating Minimum deviation Spectrometer
- 13. Radius of curvature of lens Newton's rings method
- 14. Viscosity of highly viscous liquid Stoke's method
- 15. Surface tension Drop weight method
- 16. Low range voltmeter calibration potentiometer
- 17. Low range ammeter calibration Potentiometer
- 18. Construction of IC regulated power supply
- 19. Chcracteristics of Pn junction diode
- 20. Characterstics of Zener diode
- 21. Construction of Hartley oscillator
- 22. Construction of Colpitt's oscillator
- 23. Verification of truth tables of logic gate

Category	Course Type	Course Code	Course Title		Contact Hours		Credit (C)			
IV	Foundati on Course: II	23FCU02	Yoga and Ethics		24		2			
Contact h	Contact hours per week: 2									
Year		Semester	InternalExternalMarksMarks		To	otal Marks				
FIRST		II	50			50				
	Preamble: To enable the learners to acquire the knowledge on basic yogasanas and values and practice them in real life									
Course Outcome: After completion of the course, the learners will be able to										
COs	Course Statement Knowledge Level									
CO1	recollect the basic terminologies in yoga and value education K1									

CO2	demonstrate the importance of yoga, mental exercises, principles of life and components of values.	K2
CO3	apply the techniques of dynamic & mental exercises and philosophical values in real life	K3
CO4	classify the different types of asanas, stages of mind, analysis of thought, ethical values and social values.	K4
CO5	evaluate how the yoga and value education make a person strong both physically and mentally	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CO1	9	9	9	3	1	1	3		
CO2	9	9	9	3	3	1	3		
CO3	9	9	9	3	3	3	3		
CO4	9	9	9	3	3	3	3		
CO5	9	9	9	3	3	3	3		
Total Contributio n of COs to POs	45	45	45	15	13	11	15		
Weighted Percentage of COs Contributio n to POs	2.60	2.96	3.27	1.30	1.46	1.54	2.11		
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos COURSE CONTENT									
UNIT I (5 Hours)									

Yoga and Health

Theory:

Yoga-Meaning- Importance of Yoga – Pancha Koshas - Benefits of Yoga-General Guidelines

(5 Hours)

Practice:

Dynamic Exercise- Surya Namaskar-Basic Set of Asanas-Pranayama & Kriya

UNIT II

Art of Nurturing the Mind

Theory:

Ten Stages of Mind-Mental Frequency – Methods for Concentration

Eradication of Worries- Benefits of Blessings- Greatness of Friendship- Individual Peace
and World Peace
Practice: - Worksheet
UNIT III (5 Hours)
Philosophy and Principles of Life
Purpose and Philosophy of Life- Introspection - Analysis of Thought - Moralization of
Desires- Neutralization of Anger
Vigilance and Anti- Corruption- Redressal mechanism - Urban planning and
Administration
Practice - Worksheet
UNIT IV (5 Hours)
Value education (Part-I)
Ethical Values: Meaning - Need and Significance- Types - Value education - Aim of
education and value education
Components of value education: Individual values – Self-discipline, Self Confidence, Self-
Initiative, Empathy, Compassion, Forgiveness, Honesty, Sacrifice, Sincerity, Self-control,
Tolerance and Courage
Practice - Worksheet
UNIT V (4 Hours)
Value education (Part-II)
Family Values
Constitutional or National values - Democracy, Socialism, Secularism, Equality, Justice,
Liberty, Freedom and Fraternity.
Social values – Pity and probity, self-control, universal brotherhood
Professional values - Knowledge thirst, sincerity in profession, regularity, punctuality and
faith
Religious values – Tolerance, wisdom, character.
Practice - Worksheet
Reference Books
1. Vethathiri Maharishi (2015), 'Yoga for human excellence'- Sri Vethathiri Publications
2. Value Education for human excellence- study material by Bharathiar University
2 Value Education Study Material by DVD Arts College for Woman

3. Value Education - Study Material by P.K.R Arts College for Women

Category	egory Course Course Type Code Course Title				Contact Hours	Credit (C)				
Part – III	Core Pract		23PHU07	PHYSICS – PRA	72	3				
Contact hours per week: 3										
Year		S	Semester	Internal Externa Marks Marks		l Tot	al Marks			
FIRST		I & II	40		100					
Preamble: To provide the student's deeper knowledge in motion of the particles & objects										

Course Outcome: After completion of the course, the learners will be able to											
COs			Co	urse Stater	nent				owledge Level		
CO1	rec	ollect the n	nodulus of	different ma	aterials and	give its val	ue		K1		
CO2		calibrate the voltmeter and ammeter, discuss the specific K2 resistance of wire by using electronic circuits									
CO3		calculate the magnetic moment, gravitational force, frequency by using different methods K3									
CO4	dif	examine the viscosities of different liquids and thickness of different wires K4									
CO5			refractive i	ndex of Ho	llow prism	and Solid			K5		
K1 – Re	emen	nber; K2 –	Understa	nd; K3 – A	pply; K4 –	Analyze;	K5 –	Evalu	iate		
	CO	-PO MAP	PING (CO	URSE AR	TICULAT	ION MAT	RIX)				
POs COs		PO1	PO2	PO3	PO4	PO5	P	06	PO7		
C01		9	9	9	3	3	3		3		
CO2		9	9	9	3	3	3		3		
CO3		9	9	9	3	3		1			
CO4		9	3	3	3	1		1 1			
CO5		9	3	3	3	1		1	1		
Total Contribution of COs to P		45	33	33	15	11		9	11		
Weighted Percentage of COs Contribution to POs		2.60	2.17	2.39	1.30	1.24	1.	26	1.54		
Level of cor					v correlatio	on; 3 – Mec	lium	corre	lation;		
9- High corr	9- High correlation between COs and Pos COURSE CONTENT										
ANY TWELVE (12) EXPERIMENTS ONLY											
 Young's Modulus – Uniform bending – Optic lever Young's Modulus – Non- Uniform bending – Pin and Microscope Air Wedge – Thickness of Wire Spectrometer – Refractive of liquid – Hollow prism 											

- 5. Spectrometer Refractive index of Solid Prism
- 6. Potentiometer Low range Ammeter Calibration

- 7. Compound Pendulum
- 8. Spectrometer (i.d) Curve
- 9. Rigidity modulus Static Torsion Scale and Telescope
- 10. Viscosity of highly viscous liquid Stoke's method
- 11. Surface tension Drop weight method
- 12. Comparison of Viscosities Capillary Flow Method
- 13. Field along the axis of a coil Moment of a Magnet
- 14. Potentiometer Specific Resistance of a wire
- 15. Moment of magnet Tan C Position
- 16. Resonance Column Velocity of Sound
- 17.Sonometer –Frequency of A.C
- 18. Young's Modulus Cantilever Depression Scale & Telescope

<u>SEMESTER – III</u>

Category	Course Type	Course Code	Course Title		Contact Hours		Credit (C)	
Part – III	Core: VIII23PHU08OPTICS72			2	5			
Contact h								
Year	Year Semester Internal External T Marks Marks				То	otal Marks		
SECON	D	III	25	75			100	
Preamble:	ture o	f light						
Course Ou	itcome: Af	ter completion	of the course, the	learners wil	l be at	ole to		
COs	COs Course Statement							
CO1 identify the basic terms of aberrations and its types, dispersive power of prism, Interference, Diffraction, Polarization and laser its mechanisms							K1	
CO2 discuss chromatic and achromatism in prism and lens, Fresnel's Biprism, Zone Plates, Fraunhofer diffraction at a Single light, Optical Activity explain about Huygen's and Fresnel's theory.							K2	
CO3	demonstrate the concents of laser polarimeter Michelson							
CO4	Criticize I wave lengt	nt's	K4					
CO5	determine the dispersive power, resolving power, refractive index and specific rotation of liquidK5compare Fresnel and Fraunhofer diffraction and Circularly and Elliptically Polarized lightK5							
K1 – I	Remember	; K2 – Unders	tand; K3 – Apply	; K4 – Ana	alyze;	K5 –	Evaluate	

(CO-PO MAPPING (COURSE ARTICULATION MATRIX)										
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7				
CO1	9	9	9	9	3	3	3				
CO2	9	9	9	9	3	3	3				
CO3	9	9	9	9	3	3	3				
CO4	9	3	3	3	3	1	3				
CO5	9	3	3	3	1	1	1				
Total Contributio n of COs to POs	45	33	33	33	13	11	15				
Weighted Percentage of COs Contributio n to POs	2.60	2.17	2.39	2.86	1.46	1.54	2.11				

COURSE CONTENT

UNIT I - Geometrical Optics

Aberrations - Spherical aberrations in lens – coma - Astigmatism - chromatic aberration - dispersion by a prism - Cauchy's dispersion formula- dispersive power, achromatism in prism - deviation without dispersion - chromatic aberrations in a lens - circle of least confusion – achromatic lens - condition for achromatism of two thin lenses separated by a finite distances

UNIT II - Physical optics - Interference

Fresnel's Biprism – Interference in thin films due to reflected light – Fringes due to wedge shaped thin film – Newton's rings – Refractive index of the Liquid – Michelson interferometer – Determination of a wave length of monochromatic light – difference in Wave length between two neighboring spectral lines

UNIT III - Diffraction

Fresnel's assumptions – rectilinear propagation of light – half period zone – Zone Plates – Action and Construction – comparison with a convex lens – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction at a Single light – Diffraction grating – Resolving power & Dispersive power of Grating

UNIT IV - Polarization

Double Refraction – Huygen's explanation --Optic axis in the plane of incidence, inclined and perpendicular to the crystal surface – Production and Detection of Plane, Circularly and Elliptically Polarized light – Optical Activity – Fresnel's explanation – Specific rotation –

(15 Hours)

(14 Hours)

(15 Hours)

(14 Hours)

Half Shade Polarimeter
UNIT V - Quantum Optics (14 Hours)
Light quanta and their origin – Resonance radiation– Metastable states – Population Inverse
- Optical pumping - Spontaneous and Stimulated emission - Einstein's coefficient- Ruby,
He-Ne, CO laser - Resonant cavities - elements of non linearoptics - second harmonic
generation –threshold condition for laser – Stimulated Raman scattering
Book for Study
1. A Text book of Optics - Dr. N. Subramaniam Brijlal, Dr. M.N. Avadhanulu, 2016,
S. Chand & Company Pvt. Ltd (Unit 1-5)
Reference Books
1. Modern Physics - R.Murugesan, KiruthigaSivaprasath, 2018, S.Chand and
Company Limited
2. Optics and Spectroscopy - R.Murugesan, 5 th Edition, 2005, S.Chand and Company
Limited
Web References
1. http://www.uou.ac.in
2. http://www.3.nd.edu

- 3. http://www.fisica.uniud.it
- 4. http://www.brown.edu
- 5. http://www.physics.utoronto.ca

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: IX Allied: III	23PHU09	Chemistry - I	72	5

Contact hours per week: 6

Year	Semester	Internal Marks	External Marks	Total Marks					
II	III	25	75	100					
Proomblo: The	Proamble: The sim is to provide the student to understand problems associated with hard								

Preamble: The aim is to provide the student to understand problems associated with hard water and treatment methods. To understand about basic concepts of organic chemistry, Metals and its extraction & basic aspects of chemical kinetics and photochemistry

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
CO1	define the basic terms involved in extraction of metals, Fuels, Fertilizer, Water treatment. recall Organic reactions, Chemical kinetics & Photo Chemical reaction.	K1
CO2	summarize the basic concepts and methods involved in extraction of metals, Fuels, Water treatment, Organic reactions, Chemical kinetics & Photo Chemistry	K2

CO3	illustrate Water treatment principles in Water purification techniques & Chemical kinetics in laboratory reactions	К3
CO4	examine the mechanism of electrophilic substitution reactions, Compare Thermal & Photo chemical reactions calculate hardness of Water sample	K4
CO5	evaluate the problems related with Extraction of metals, Fertilizers, Fuels & Rate of Chemical reactions	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

		(-				/	
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	9
CO2	9	9	9	9	9	3	9
CO3	9	9	3	3	3	3	3
CO4	9	9	3	3	3	3	1
CO5	9	9	3	3	3	3	1
Total Contributio n of COs to POs	45	45	27	27	27	15	23
Weighted Percentage of COs Contributio n to POs	2.60	2.96	1.96	2.34	3.03	2.10	3.23

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

COURSE CONTENT

UNIT I - Metals and its Extraction

Minerals and Ores-Oxide and Sulphide ores .General methods of extraction of metals-Extraction of Uranium from its Ore. Methods of ore dressing-Gravity separation, Magnetic separation and Froth flotation- Reduction methods-Roasting, Calcination and Smelting-Types of refining Van Arkel method, Zone refining and Electro refining

UNIT II - Fuels and Fertilizers

(15 Hours)

(15 Hours)

Fuels- Classification-Composition and uses of gaseous fuels like water gas, producer gas, liquefied petroleum gas, gobar gas, Compressed natural gas-Advantages of gaseous fuels over solid fuels - Fertilizers- Classification – Urea , Ammonium sulphate, superphosphate, Triple super phosphate, potassium nitrate- manufacture and uses - Silicones - Preparation, properties and applications

UNIT III - Water Treatment

Hardness of water: temporary and permanent hardness, disadvantages of hard water - Softening of hard water - Zeolite process, demineralization process and reverse osmosis - Purification of water for domestic use - Chlorination-Break point chlorination, Ozonolysis and UV treatment- Definition and importance of BOD and COD.

Self study Topics: Role of activated carbon in water treatment – Adsorption

UNIT IV - Fundamentals of Organic Chemistry

(14 Hours)

Hybridization in methane, ethane, acetylene, benzene - Classification of reagents - electrophiles, nucleophiles and free radicals - Classification of reactions addition, substitution, elimination, condensation and polymerisation - Polar Effects - Inductive effect, resonance, hyper-conjugation, steric effect - electrophilic substitution mechanism in benzene (Nitration, Sulphonation, Friedal crafts alkylation and acylation)

UNIT V - Chemical Kinetics and Photochemistry

(14 Hours)

Rate of chemical reaction- Differential rate expression - order and molecularity - Integrated rate expression for first, second and zero order reactions - Half-life period— Effect of temperature on reaction rate - Activation energy- Arrhenius equation

Photochemistry - Statement of Grothus - Draper Law, Stark-Einstein's Law- Difference between Photo chemical and Thermal reaction- Quantum Yield-Definition- Kinetics of H_{2-} Br₂ reaction. Photosynthesis, Photosensitisation, Phosphorescence, Fluorescence, Chemiluminescence - Definition with examples

Text Books

- 1. Text book of Ancillary Chemistry -Dr. Veeraiyan V, Edition 2008, High mount Publishing house, Chennai-14 (Both in Tamil and English)
- 2. Text book of Ancillary Chemistry Vaithyanathan S. and Others, Edition-2006, Priya Publications, Karur-2

Reference Books

- 1. Text book of Organic chemistry Soni P and Others,Edition -2006, Sultan Chand and Company, New Delhi
- 2. Text book of inorganic chemistry Soni P and Others, Edition -2006, Sultan Chand and Company, New Delhi

3. Text book of Physical Chemistry - Puri B.R., Sharma and Pathania, Edition-2006, Vishal

Web References

UNIT I

1.https://youtu.be/1XgIG65b8_4

2.https://youtu.be/W4c7dOPG9OI

3.https://youtu.be/8oTdCGj334U

4.https://youtu.be/tKZiyg-mNeg

5.https://youtu.be/ZAYAe_Oimlo

6.https://youtu.be/fq-X0FvulQ8

7.https://youtu.be/uz5nyCu4WA0

8. https://www.slideshare.net/guest2082ec7/extraction-of-metals-1094182

UNIT II

1.https://www.slideshare.net/haseebmuhsin/gaseous-fuels

2.https://www.slideshare.net/krishnaSethi1/fertilizer-and-its-classification

3.https://youtu.be/uXQg_hi2pHk

4.https://youtu.be/B-Ullir_QH8

UNIT III

1.https://www.slideshare.net/ahsanshafiq90/hardness-of-water
2.https://youtu.be/BmpknJNDXfE
3.https://youtu.be/4RDA_B_dRQ0
4.https://youtu.be/4c31SbnEDTA
UNIT IV
1.https://www.slideshare.net/Ashokkumarziet/hybridization-sp-sp2-and-sp3
2.https://www.slideshare.net/jeevachem4198/basic-effects-in-organic-chemistry
UNIT V
1.http://www.slideshare.net/ShaktirupaPriyadarshani/photochemistry-by-shaktirupa-

priyadarshani

 $2.http://www.slideshare.net/shahzad_ali27/chemical-kinetics-32001888$

Category	Course Type	Course Code	Course Title		Con Ho	tact urs	Credit (C)		
IV	Ability Enhancem ent Course-I	23AEU01	Informa	tion Sec	urity	2	4	2	
Contact hou	ırs per week	: 2							
Year	Se	mester	Interna Marks	1	Externa Marks	Tota		otal Marks	
SECOND		III	50					50	
Preamble:	Fo learn abou	t the basics of	f Informatio	n Securi	ty	_	_		
Course Out	come: To lea	rn about the l	oasics of Inf	ormation	n Securit	y			
COs	COs Course Statement							Knowledge Level	
CO1	recall the fu and Security	ndamental co v policies	ncepts of In	formatic	on Securi	ity, Ri	isk	K1	
CO2	discuss the oprivacy issu	concepts of R es	isks, vulner	abilities,	ethical a	and		K2	
CO3	apply the ide	eas in security	y planning a	nd const	ruct the	polici	ies	К3	
CO4	CO4 categorize the Privacy, Ethical Issues, Laws, Software Issues and Crimes							K4	
CO5	summarize (information	Cryptography security	, cipher text	and three	eats in			K5	
K1 – R	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate								
CO-PO MAPPING (COURSE ARTICULATION MATRIX)									
POs COsPO1PO2PO3PO4PO5PO6PO7									

C01	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	1	1
Total Contributio n of COs to POs	45	45	45	45	27	16	19
Weighted Percentage of COs							
Contributio n to POs	2.60	2.96	3.27	3.90	3.03	2.24	2.67

COURSE CONTENT

UNIT I - Introduction to Information Security

Information Security: Principles, Concepts and Definitions - The need for Information Security - Benefits of Information Security. The Security Problem in Computing: The Meaning of Computer Security - Computer Criminals

UNIT II - Information Risk

Information Risk: Threats and Vulnerabilities of Information Systems – Introduction to Risk Management. Information Security Management Policy, Standards and Procedures

UNIT III - Security Planning

Administering Security: Security Planning - Security Planning Team Members - Assuring Commitment to a Security Plan - Business Continuity Plan - Incident Response Plan -Organizational Security Policies, Physical Security

UNIT IV - Privacy and Ethical Issues in Information Security (5 Hours)

Legal Privacy and Ethical Issues in Information Security: Protecting Programs and Data -Information and the Law - Rights of Employees and Employers - Software Failures -Computer Crime - Ethical Issues in Information Security

UNIT V – Cryptography

Cryptography: Introduction to Cryptography -What is Cryptography – Plain Text – Cipher Text – Substitution Ciphers - Transposition Ciphers

Text Books

 Sumitra Kisan and D.Chandrasekhar Rao, Information Security Lecture Notes, Department of Computer Science and Engineering & Information Technology, Veer Surendra Sai University of Technology (Formerly UCE, Burla) Burla, Sambalpur, Odisha

Reference Books

(5 Hours)

(4 Hours)

(5 Hours)

(5 Hours)

Andy Taylor (Editor), David Alexander, Amanda Finch & David Sutton, Information Security Management Principles an ISEB Certificate, The British Computer Society, 2008

Category	Course Type	Course Code	Co	urse Title	e	Con Ho		C	redit (C)
IV	Non- Major Elective	23NMU01A	Indian W	omen and S	Society	2	4		2
Contact hours per week: 2									
Year		Semester	Intern Mark		Externa Marks	-	To	otal	Marks
SECON	D	III	50					5	0
Preamble:	To familia	rize students w	with the spec	ific cultur	ral contex	ts of v	wome	n in	India
Course Ou	itcome: Af	ter completion	of the cour	se, the lear	rners will	l be al	ole to		
COs		Co	ourse State	ment					owledge Level
CO1	know wor	nen status in In	dian society	y as an aca	ademic di	scipli	ne		K1
CO2	faced by t	the various rol hem in the soci	ety		C				K2
CO3	from the w	olutions to the violence against on women ent	twomen	-					К3
CO4	critically a	analyze the lifes	style and ch	allenges o	of women	l			K4
CO5	discuss th women in	e importance o general	of women h	nealth and	issues r	elated	to		K5
K1 – I	Remember	; K2 – Unders	tand; K3 –	Apply; k	K4 – Ana	lyze;	K5 – 1	Eva	luate
	СО-РО	MAPPING (C	COURSE A	RTICUL	ATION	MAT	RIX)		
POs COs	PO	1 PO2	PO3	PO4	POS	5	PO6		PO7
CO1	9	9	9	9	0		0		0
CO2	9	9	9	9	3		0		3
CO3	9	9	9	9	9		9		9
CO4	3	3	3	9	9		9 9		9
CO5	3	3	1	1	1		9		9
Total Contribut	33 io	33	31	37	22		27		30

	1	1	1	1	1	1	1	
n of COs to								
POs								
Weighted								
Percentage								
of COs								
Contributio								
n to POs	1.90	2.17	2.25	3.21	2.47	3.79	4.21	
Level of corre	lation · A	No corrola	tion 1 I	ow corrolo	tion: 3 N	Indium cor	rolation	
9- High correl				ow correla	1001, 5 - 10			
9- High correc	ation betw	een cos a						
COURSE CO	NTENT							
UNIT I - Histe	orical Back	ground					(5 Hours)	
History of Wor	men's statu	s from Ved	ic times, W	omen's par	ticipation in	n India's Pr	e and	
Post Independe	ence moven	nent and Ec	conomic Inc	lependence	, fundamen	tal rights ar	nd	
importance of	women in N	Aodern Soc	ciety					
UNIT II - Rol	e of Wome	n (Challen	ges & rem	edies)		(5 Hours)	
Women in Fan	nily, Agricu	lture, Educ	ation, Busi	ness, Media	a, Defense,	Research and	nd	
Development,	Sports, Civ	il Services,	Banking Se	ervices, Soc	cial Work, l	Politics and	Law	
UNIT III - W	omen and	Health					(5 Hours)	
Women and he	alth issues,	Malnutritie	on, Factors	leading to a	anemia, Rej	oroductive	maternal	
health and Infa	nt mortality	y, Stress						
UNIT IV - Iss	ues of Wor	nen				(5 Hours)	
Women's issue	es, Dowry F	Related Har	assment and	d Dowry De	eaths, Gend	ler based vi	olence	
against women	, Sexual ha	rassment, I	Loopholes in	n Practice to	o control w	omen issue	S	
UNIT V - Wo	men Empo	werment				(4 Hours)	
Meaning, object	Meaning, objectives, Problems and Issues of Women Empowerment, Factors leading to							
Women Empowerment, Role and Organization of National Commission for Women,								
Central and Sta	ate Social V	Velfare Boa	rd for Won	nen Empow	verment, Re	ality of wo	men	

empowerment in the era of globalization **Reference Books**

S.No	Authors	Title	Publishers	Year of Publication
1	Mala Khullar	Writing the Women's Movement: A Reader	Zubaan	2005
2	IAWS	The State and the Women's Movement in India	IAWS, Delhi	1994
3	Kosambi,Me era	Crossing Thresholds: Feminist Essays in Social History	Permanent Black	2007
4	TRowbotham , Sheila	Hidden from History: Women's Oppression and the Fightagainst It	Pluto Press, London	1975

	5	Susheela Mehta	Revolution and the Status of Women	Metropolitan Bookco.pvt ltd, New Delhi	1989	
--	---	-------------------	---------------------------------------	--	------	--

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
	Non-				
IV	Major	21NMU01B	Advanced Tamil	24	2
	Elective				

SEMESTER – IV

Category	Course Type	Course Code	Course T	litle	Conta Hour		Credit (C)
Part – III	Core: X	23PHU10	Mathematical	Physics	72		5
Contact h	ours per wo	eek: 6					
Year	\$	Semester	Internal Marks	Externa Marks		Tot	al Marks
SECON	D	IV	25	75			100
Preamble:	The aim is	to provide the	student to acquire	e knowledge	and app	ply it	to various
physical pr	oblems and	to develop the	problem-solving	ability			
Course Ou	itcome: Af	ter completion	of the course, the	learners wil	l be able	e to	
COs		Co	ourse Statement]	Knowledge Level
CO1 state the types of matrices, Vector and Scalar functions, Mean, Median, Mode, Curve fitting, Definitions and Generalized Displacement, Velocity, Potential and force							K1
 interpret Eigen values, Gradient of a scalar field, Moment generating function, Laws reducible to linear law, Generalized acceleration, momentum, Physical significance of H 						K2	
CO3	solve pr	oblems in Mat	rix, Divergence a Mode, Probability	and Curl of			К3
 examine Eigen vectors, method of group averages, Stokes theorem, simple pendulum, Linear harmonic oscillator using Lagrangian and Hamiltonian function 						K4	
CO5 evaluate the principles of mechanics, solve problems in Cayley- Hamilton theorem, Gauss Divergence theorem, Standard Deviation, Equations involving three constants, Principle of least squares, Fitting a straight line and a parabola					d	K5	
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5							valuate
CO-PO MAPPING (COURSE ARTICULATION MATRIX							
POs	POI	PO2	PO3 PO	94 PO:	5	PO6	PO7

COs									
C01	9	9	9	9	9	3	3		
CO2	9	9	9	9	9	3	3		
CO3	9	9	3	3	3	3	1		
CO4	9	9	3	3	1	1	1		
CO5	9	3	1	1	1	1	1		
Total Contributio n of COs to Pos	45	39	25	25	23	11	9		
Weighted Percentage of COs Contributio n to POs	2.60	2.56	1.81	2.17	2.58	1.54	1.26		
Level of corre	Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation;								

COURSE CONTENT

UNIT I – Matrices

(15 Hours)

Introduction – Special types of Matrices - Adjoint of a matrix – Eigen values and Eigen Vectors – Characteristic Equation of a Matrix- Cayley – Hamilton theorem -Problems

UNIT II - Vector Calculus

Gradient of a scalar field – Divergence of a Vector function - Curl of a Vector function and its physical significance – Gauss divergence theorem and it's proof -problems – Stoke's theorem and it's proof –problems

UNIT III - Statistics

Measures of central tendency – Mean - Median and Mode - Mean deviation – Standard deviation – Moments - Moment Generating Function – simple problems – Probability - Addition and Multiplication laws of Probability - simple problems

UNIT IV-Empirical Laws and Curve Fittings

Introduction – The linear law – Laws reducible to linear law – Graphical method – Method of group averages – Fitting a straingt line – Equations involving three constants – Principle of least squares – Fitting a straight line and a parabola

UNIT V- Lagrangian & Hamiltonian Formulation

Concept of Lagrangian - Generalized Coordinates- D'Alembert's Principle – Lagrangian equation of motion from D'Alembert's Principle – Application of Lagrangian equation to simple pendulum, Linear harmonic oscillator - Hamiltonian function H – Physical significance of H – Applications of Hamilton's equation to Simple pendulum, Linear Harmonic Oscillator

Text Books

(14 Hours)

(15 Hours)

(14 Hours)

(14 Hours)

- 1. Mathematical Physics Jaya Prakash
- Mathematical Physics H.K. Dass,2005, S.Chand& Company Ltd, New Delhi (Unit 1, 2 &3)
- 3. Classical Mechanics Gupta, Kumar and Sharma, 2015, Pragati Publications (Unit 5)
- 4. Numerical Methods P. Kandasamy, K. Thilagavathy and K. Gunavathi, S. Chand & Co (Unit 4)

Reference Books

- 1. Mathematical Physics with Classical Mechanics Satyaprakash, 2002, Sultan Chand & Sons, New Delhi
- 2. Mathematical Physics B.D.Gupta, 4th Edition, 2010, Vikas Publishing House

Web References

- 1. https://byjus.com/jee/matrices/
- 2. https://www.esaral.com/matrices-notes-for-class-12-iit-jee/.
- 3. https://en.wikipedia.org/wiki/Vector_calculus
- 4. https://web.iitd.ac.in > courses > mcl704 > BVC
- 5. https://sites.und.edu/timothy.prescott/apex/web/apex.Ch15.S7.html
- 6. https://byjus.com/maths/central-tendency/
- 7. https://revisionmaths.com/gcse-maths-revision/statistics-handling-data/standard-deviation
- 8. https://byjus.com/maths/probability/
- 9. https://www.slideshare.net/niravbvyas/curve-fitting-lecture-notes

10.https://www.google.com/search?q=emprirical+laws+and+curve+fittings+notes+pdf&sxs rf=AOaemvIaer08gnxqVZhL04v9eXoDJpo05w%3A1632820151577&ei=t9tSYanTIq_Mz 7sPzPCTOA&oq=emprirical+laws+and+curve+fittings+notes+pdf&gs_lcp=Cgdnd3Mtd2l6 EAMyBQgAEM0COgcIABBHELADOgcIIxCwAhAnOgcIIRAKEKABSgQIQRgAUPoT WJYwYOc3aAFwAXgAgAGlA4gB3AqSAQkwLjMuMi4wLjGYAQCgAQHIAQjAAQE & sclient=gws-wiz&ved=0ahUKEwjpiveIqaHzAhUv5nMBHUz4BAcQ4dUDCA0&uact=5 11. https://www.youtube.com/watch?v=sOE8Slo3Pqw

12. https://www.physics.rutgers.edu > ~shapiro > book3

Category	Course Type	Course Code	Course Title		Con Ho	tact urs	Credit (C)
Part – III	Core: XI Allied: V	23PHU11	Chemistry - II		6	0	5
Contact hours per week: 5							
Year		Semester	Internal Marks	Externa Marks		To	otal Marks
SECOND IV		IV	25 75			100	
Preamble: The aim is to provide the student to acquire knowledge about experimental							
techniques in chemistry & to apply chemistry in Batteries							

Course Outcome: After completion of the course, the learners will be able to							
COs		Co	ourse State	ment			Knowledge Level
CO1	define basic terms involved in Coordination Chemistry, Phase Rule, Electro Chemistry & Analytical techniques & Usage of bio molecules						
CO2	elaborate the molecules, Pi techniques						K2
CO3	illustrate Coo Phase diagram Analytical teo compounds	n for Alloy	system, EN	MF series to	o construct	Cell,	К3
CO4	examine the formation, Err calculate EMI	ors in Anal f of the Cel	ytical techr l	niques		Alloy	K4
CO5	CO5 evaluate the importance of Coordination Compounds, Analytical techniques determine the structure of Glucose & Fructose					unds,	K5
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 –							Evaluate
CO-PO MAPPING (COURSE ARTICULATION MATRIX)							
POs COs	PO1	PO2	PO3	PO4	PO5	РО	6 PO7
CO1	9	9	9	9	3	3	9
CO2	9	9	9	9	3	9	9
CO3	9	9	3	3	3	3	3
CO4	9	9	3	3	3	3	3
CO5	9	9	3	3	3	3	3
Total Contribut n of COs t POs						27	
Weighted Percentage of COs Contributi n to POs	io 2.60	2.96	1.96	2.34	1.69	2.9	
	orrelation: 0 – rrelation betw			ow correla	ition; 3 – N	lediun	1 correlation;

COURSE CONTENT

Definition of terms - Classification of Ligands - Nomenclature - Chelation - EDTA and its application - Werner's Theory - Effective Atomic Number - Pauling's theory- Postulates -Applications to Ni(CO)₄,Ni(CN)₄, K₄[Fe(CN)₆]- Merits and Demerits of Werner's and Pauling's theory - Biological Role of haemoglobin and Chlorophyll (elementary idea only) -Applications of coordination compounds in qualitative analysis and Quantitative analysis like Separation of copper and cadmium ions; Nickel and cobalt ion; Identification of metal ions like cu, Fe and Ni. Estimation of Ni using DMG and Al using Oxine

UNIT II –Biomolecules

(12 Hours) Carbohydrates- Classifications, preparation and reactions of glucose and fructose. Discussion of open and ring structure of glucose-Mutarotation-Inter conversion of glucose to fructose and vice versa - Preparation and properties of sucrose. Properties of starch, cellulose and derivatives of cellulose - Diabetes - causes and control measures - Amino acids: Classification, preparation and properties of alanine -preparation of dipeptide using Bergman method

UNIT III -Phase Diagram

Phase rule: Definition of Phase- Component- Degree's of freedom- One component system-Water system- Reduced phase rule- Simple Eutectic system- Pb-Ag system- Pattinson's process – Extraction of Silver from Lead ore

UNIT IV – Electrochemistry

Galvanic cells - emf - standard electrode potential - reference electrodes - electrochemical series and its applications - Determination of pH using H₂,Quinhydrone and glass electrodes - Electroplating process -Nickel and Chrome plating - Batteries- Primary and Secondary- Ni-Cd Battery- Lithium ion Battery- Fuel cells- H2-O2 fuel cells- Advantages Self study Topic: Batteries in future

UNIT V - Analytical Techniques

Fundamental principles, theory, instrumentation and simple applications: UV-Visible, FT-IR Spectroscopy, and Raman spectroscopy- Difference between Raman and FT-IR Spectroscopy. Seperation techniques- Chromatography- Types- Principle and Applications of Thin Layer Chromatography - Gas Chromatography (GC) and HPLC

Text Books

- 1. Text book of Ancillary Chemistry -Dr. Veeraiyan V, Edition 2008, High mount Publishing house, Chennai-14 (Both in Tamil and English)
- 2. Text book of Ancillary Chemistry Vaithyanathan S. and Others, Edition-2006, Priya Publications, Karur-2

Reference Books

- 1. Text book of Organic chemistry Soni P L and Others, Edition -2006, Sultan Chand and Company, New Delhi
- 2. Text book of inorganic chemistry Soni P L and Others, Edition -2006, Sultan Chand and Company, New Delhi
- 3. Text book of Physical Chemistry Puri B.R., Sharma and Pathania, Edition-2006, Vishal Publishing Co., New Delhi

Web References

UNIT I

1.https://www.slideshare.net/mobile/chemsant/san-complex-1

2.https://courses.lumenlearning.com/introchem/chapter/coordination-number-ligands-and-

UNIT I - Co-ordination Chemistry

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

geometries/	
3.https://www.slideserve	e.com/uriah/nomenclature-of-coordination-compounds-iupac-rules
4.https://www.slideshar	e.net/mobile/MohammedIsmail251/theory-of- ds1
UNIT II	
1.https://www.slideshar	e.net/drjayeshpatidar/carbohydrate-66452675
2.https://www.slideshare	e.net/shefalijaiswal2/carbohydrates-91702638
UNIT III	
1.https://www.slideshar	e.net/jatingarg52/the-phase-rule
UNIT IV	
1.https://www.slideshar	e.net/mobile/KALYANIPALANICHAMY/batteries-and-types
2.https://images.app.goo	o.gl/ADvXo628GHwd77ZK9
3.https://www.slideshar	e.net/mobile/Santachem/fuel-cells-26447935
4.https://www.slideshare	e.net/mobile/samiramohammadpour/lithium-ion-batteries-75379943
UNIT V	
1.https://microbenotes.c	om/uv-spectroscopy-principle-instrumentation-applications/
2.https://www.slideshare	e.net/mobile/SAU84000/infrared-instrumentation
3.https://youtu.be/SsIYI	DEma_cU
4.https://youtu.be/Y7Gb	oNd8mMHg
5.https://youtu.be/ZWw	LCnuYRys
6.https://youtu.be/lj5OV	VzhZSac

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: XII Practical: II	23PHU12	Physics - Practical II	72	3
Contact ho	urs per week	: 3			

Year	Semester	Internal Marks	External Marks	Total Marks
SECOND	III & IV	40	60	100

Preamble: The aim is to provide the students acquire practical knowledge of physics experiments to handling of experiments and comprehend about different equipment used

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
CO1	find the various principles, procedures and methods through working in groups in performing the laboratory experiments and by compare the results	K1
CO2	realize the formation of spectrum with prism and grating	K2
CO3	calculate temperature coefficient by construct various carey foster bridge	K3

CO4	measure simple electrical and magnetic quantities such as voltage, current, and earth's magnetic field	K4
CO5	determine the young's modulus of materials by using Koenig's method	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	3	1	1
CO4	9	9	3	3	3	1	1
CO5	9	3	3	3	1	1	1
Total Contribution of COs to POs	45	39	33	23	25	9	9
Weighted Percentage of COs Contribution							
to POs Level of correlati	2.60	2.56	2.39	1.99	2.81	1.26	1.26

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

COURSE CONTENT ANY TWELVE (12) EXPERIMENTS ONLY

- 1. Rigidity Modulus Torsional Pendulum with & without symmetrical masses
- 2. Quincke's method Surface Tension and Angle of Con tact of Mercury
- 3. Specific heat capacity Newton's law of cooling Spherical calorimeter
- 4. Spectrometer Hollow prism Refractive index of the Prism
- 5. Determination of M_H and B_H
- 6. Zener diode Characteristics
- 7. Spectrometer -(i i') curve
- 8. Newton's rings Refractive index of a lens
- 9. Reduction factors of a Tangent Galvanometer BG
- 10. Comparison of Mutual Inductance BG
- 11. Spectrometer Grating Minimum deviation & Normal Incidence
- 12. Young's Modulus Koenig's Method Non Uniform bending
- 13. Young's Modulus Koenig's Method Uniform bending

- 14. Spectrometer Cauchy's constant
- 15. Spectrometer Dispersive Power
- 16. Spectrometer Narrow Angled Prism
- 17. Carey Foster's Bridge Temperature Coefficient
- 18. Potentiometer Reduction factor of T.G in Primary
- 19. Potentiometer EMF of a thermocouple
- 20. B.G Absolute Capacity

CO1

9

9

9

9

9

9

9

21. B.G – Determination of High Resistance

Category	Cou Ty		Course Code	Co	urse Title			ntact ours	Credit (C)
Part – III	Core: Allie		23PHU13		Chemistr ractical	у -	7	2	2
Contact ho	urs pe	r week	: 3						
Year		S	Semester	Interna Mark		Externa Marks		Tot	al Marks
SECON	D]	III & IV	40		100			
Preamble: The aim is to provide the student to gain basic knowledge in Practical Chemistry & also to understand a basic concept in both qualitative & quantitative analysisCourse Outcome: After completion of the course, the learners will be able to									
COs		Course Statement K							
CO1 define the concepts of aromaticity, acid-base neutralization reaction, properties of saturated compounds & principles of volumetric law								K1	
CO2			e amount of su olumetric analy				-		К2
CO3	unkr	nown si	ormality of un ubstances ganic compou		ion & we	ight of			K3
CO4	func	tional g	& identify org group. qualitative &			d on its			K4
CO5			ganic compou	• •	nic qualita	tive ana	lysis		K5
K1 – R	ememl	oer; Kž	2 – Understan	nd; K3 – Ap	oply; K4 -	- Analyz	ze; K	5 - Ev	aluate
	CO-I	PO MA	APPING (CO	URSE ART	TICULAI	TION M	ATR	IX)	
POs COs		PO1	PO2	PO3	PO4	PO	5	POe	6 PO7

CO2	9	9	9	9	9	3	9
CO3	9	9	9	9	9	3	3
CO4	9	9	3	3	9	3	3
CO5	9	9	3	3	3	3	3
Total Contribution of COs to POs	45	45	33	33	39	21	27
Weighted Percentage of COs Contribution to POs	2.60	2.96	2.39	2.86	4.38	2.95	3.79

COURSE CONTENT ANY TWELVE (12) EXPERIMENTS ONLY

I. VOLUMETRIC ANALYSIS:

1. Estimation of sodium hydroxide using standard sodium carbonate

2. Estimation of hydrochloric acid- standard oxalic acid

3. Estimation of oxalic acid- standard sulphuric acid

4. Estimation of ferrous sulphate- standard Mohr salt solution

5. Estimation of oxalic acid- standard ferrous sulphate

6. Estimation of potassium permanganate- standard sodium hydroxide

II. ORGANIC ANALYSIS: systematic analysis

1. Detection of Elements (N, S, Halogens)

- 2. To distinguish between aliphatic and Aromatic
- 3. To distinguish between saturated and unsaturated
- 4. Functional group tests for phenols, acids (mono and di), aromatic primary amine, amide, diamide, carbohydrate. Functional groups characterized by confirmatory test

Reference Books

1. Basic Principles of practical Chemistry: Venkateswaran, Veerasamy & Kulandaivel, S.Chand& Co

Total Marks: 100

External - 50

Organic Qualitative Analysis - 20, Volumetric Estimation - 20, Record - 10

Volumetric Analysis (mark split up)

i) Procedure 4 marks

ii) Results < 2 % - 16 marks 2-3 % -12 marks 3-4 % - 8 marks 4 > 4 % - 4 marks

Organic Qualitative Analysis (mark split up)

i) Identification of Nitrogen - 4 marks

ii) Saturated on unsaturated - 2 marks

iii) Aliphatic or Aromatic - 2 marks

iv) Preliminary reactions with Procedure - 4 marksv) Functional group identified correctly - 8 marksInternal - 50

Category	Course Type	Course Code	Course T	`itle	Contact Hours	Credit (C)
IV	Skill Enhance ment: I	23SEPHU01	Energy Reso	ources	36	2
Contact he	ours per wo	eek: 3				
Year	5	Semester	Internal Marks	Externa Marks	· · ·	Fotal Marks
SECON	D	IV	50			50

SECONDIV50--50Preamble: The aim is to provide the student to acquire knowledge of Conventional and
non- Conventional Energy Sources and apply it in day to day life & to understand the
Importance of energy management--50

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
CO1	reminisce the basic concepts of conventional energy sources and non-conventional energy sources	K1
CO2	realize the principles of different types of renewable energy sources	K2
CO3	utilize the learned concepts of renewable energy in its applications	K3
CO4	identify and evaluate the reasons behind the use of different renewable energy sources	K4
CO5	assess the performance of renewable energy sources	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

(CO-PO MAPPING (COURSE ARTICULATION MATRIX)											
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7					
CO1	9	9	9	9	3	9	9					
CO2	9	9	3	9	3	9	9					
CO3	9	9	3	3	9	9	9					

						-	-
CO4	9	3	3	3	3	3	3
CO5	9	3	3	3	1	3	3
Total							
Contributio	45	33	21	27	19	33	33
n of COs to	43	55	21	21	19	55	55
POs							
Weighted							
Percentage							
of COs							
Contributio							
n to POs	2.60	2.17	1.52	2.34	2.13	4.63	4.63
9- High correl COURSE CO		een COs a	nd Pos				
UNIT I - Con	ventional F	Energy Sou	rces			((8 Hours)
Worlds reserve	e - commerc	cial energy	sources and	l their avail	ability – va	rious forms	of
energy – renev	vable and co	onventional	energy sys	tem – com	parison – C	oal, oil and	natural
gas – applicati	ons – Merit	s and Deme	erits				
UNIT II - Sola	ar Energy						(7 Hours)
Renewable ene	ergy source	s – solar en	ergy – natu	re and solar	radiation -	- componen	ts – solar
heaters - crop	dryers – sol	lar cookers	– water des	alination (b	olock diagra	um) Photovo	oltaic
generation – m	erits and de	emerits - Hy	ydrogen pro	oduction			
UNIT III - Bi	omass ener	gy fundam	entals				(7 Hours)
Biomass energ	gy – classif	rication – p	hotosynthe	sis – Biom	ass conver	sion proces	ss– biogas

plant – biomass applications

UNIT IV - Biomass Utilization

Gobar gas plants – wood gasification – advantages & disadvantages of biomass as energy source

UNIT V - Other forms of energy sources

Geothermal energy – Wind energy – Ocean thermal energy conversion – energy from waves and tides (basic ideas) - Importance of energy management

Text Books

 Non- Conventional Energy Sources – G.D.Rai, 4th Edition, 2005, Kanna Publishers Ltd., (Unit 1-5)

Reference Books

1.Renewable energy sources and emerging Technologies – D.P. Kothari, K.C. Singal& Rakesh Ranjan, 2008, Prentice Hall of India Pvt. Ltd., New Delhi

2. Renewable Energy sources and their environmental impact – S.A. Abbasi, 2008, Nasema Abbasi PHI Learning Pvt. Ltd., New Delhi

Web References

1. <u>https://www.conserve-energy-future.com/different-energy-sources.php</u>

(7 Hours)

(7 Hours)

Category	Course Type	Course Code	Co	ourse Tit	le	Con Hor		Cre	edit (C)		
IV	Ability Enhance ment: II	23AEU02	(Cu	umer Riş rriculum ended by	as	24	4		2		
Contact he	ours per w	eek: 2									
Year		Semester	Intern Mark		Externa Marks	-	То	Total Marks			
SECON	D	V	50					50)		
Preamble:	Preamble: This paper seeks to familiarize the students with their rights and responsibilities										
as a consumer, the social framework of consumer rights and legal framework of protecting											
consumer rights											
Course Ou	itcome: A	ter completion	of the cour	se, the lea	arners wil	l be at	ole to				
COs		Course Statement									
CO1	memorize the procedure of redress of consumer complaints, and the role of different agencies in establishing product and service standards								K1		
CO2	explain th	e Consumer Pro	otection Lav	w in India	a				K2		
CO3	-	ound practical law and the pro		g about	the pra	ctice	of		K3		
CO4	evaluate t	he regulations	and legal a	ctions th	at helps t	o prot	ect		K4		
CO5	analyze tl field	ne knowledge	and skills r	needed fo	or a caree	er in t	his		K5		
K1 – I	Remember	; K2 – Unders	tand; K3 –	Apply;	K4 – Ana	lyze;	K5 –	Evalı	ıate		
	СО-РО	MAPPING (COURSE A	RTICU	LATION	MAT	'RIX)				
POs COs	PO	1 PO2	PO3	PO4	PO	5	PO6	•	PO7		
CO1	9	9	9	9	1		0		1		
CO2	9	9	9	9	1		0		1		
CO3	9	9	9	3	3		1		1		
CO4	9	3	1	1	3		3 3				
C05	9	1	3	0	9		9 9				
Total Contribut n of COs t	-	31	31	21	17		13		15		

POs							
Weighted							
Percentage							
of COs							
Contributio n to POs	2.60	2.04	2.25	1.91	1.91	1.82	2.11
TIC					1. O N	r 1.	1.4

COURSE CONTENT

UNIT 1 - Conceptual Framework

Consumer and Markets: Concept of Consumer, Nature of markets: Liberalization and Globalization of markets with special reference to Indian Consumer Markets, E-Commerce with reference to Indian Market, Concept of Price in Retail and Wholesale, Maximum Retail Price (MRP), Fair Price, GST, labeling and packaging along with relevant laws, Legal Metrology. Experiencing and Voicing Dissatisfaction: Consumer buying process, Consumer Satisfaction/dissatisfaction-Grievances-complaint, Consumer Complaining Behaviour: Alternatives available to Dissatisfied Consumers; Complaint Handling Process: ISO 10000 suite

UNIT II - The Consumer Protection Law in India

Objectives and Basic Concepts: Consumer rights and UN Guidelines on consumer protection, Consumer goods, defect in goods, spurious goods and services, service, deficiency in service, unfair trade practice, and restrictive trade practice

Organizational set-up under the Consumer Protection Act: Advisory Bodies: Consumer Protection Councils at the Central, State and District Levels; Adjudicatory Bodies: District Forums, State Commissions, and National Commission: Their Composition, Powers, and Jurisdiction (Pecuniary and Territorial), Role of Supreme Court under the CPA with important case law

UNIT III - Grievance Redressal Mechanism under the Indian Consumer (8 Lectures) Protection Law

Grounds of filing a complaint; Limitation period; Procedure for filing and hearing of a complaint; Disposal of cases, Relief/Remedy available; Temporary Injunction, Enforcement of order, Appeal; Offences and penalties. Leading Cases decided under Consumer Protection law by Supreme Court/National Commission: Medical Negligence; Banking; Insurance; Housing & Real Estate; Electricity and Telecom Services; Education; Defective Products; Unfair Trade Practices

UNIT IV - Role of Industry Regulators in Consumer Protection

(6 Lectures)

i. Banking: RBI and Banking Ombudsman

ii. Insurance: IRDA and Insurance Ombudsman

iii. Telecommunication: TRAI

iv. Food Products: FSSAI

v. Electricity Supply: Electricity Regulatory Commission

vi. Real Estate Regulatory Authority

UNIT V - Contemporary Issues in Consumer Affairs (6 Lectures) Consumer Movement in India: Evolution of Consumer Movement in India, Formation of

(8 Lectures)

(8 Lectures)

consumer organizations and their role in consumer protection, Misleading Advertisements and sustainable consumption, National Consumer Helpline, Comparative Product testing, Sustainable consumption and energy ratings

Quality and Standardization: Voluntary and Mandatory standards; Role of BIS, Indian Standards Mark (ISI), Ag-mark, Hallmarking, Licensing and Surveillance; Role of International Standards: ISO an Overview

Note: Unit 2 and 3 refers to the Consumer Protection Act, 1986. Any change in law would be added appropriately after the new law is notified Suggested Readings:

- 1. Khanna, Sri Ram, Savita Hanspal, Sheetal Kapoor, and H.K. Awasthi. (2007) Consumer Affairs, Universities Press.
- 2. Choudhary, Ram Naresh Prasad (2005). Consumer Protection Law Provisions and Procedure, Deep and Deep Publications Pvt Ltd.
- 3. G. Ganesan and M. Sumathy. (2012). Globalisation and Consumerism: Issues and Challenges, Regal Publications
- 4. Suresh Misra and Sapna Chadah (2012). Consumer Protection in India: Issues and Concerns, IIPA, New Delhi
- 5. Rajyalaxmi Rao (2012), Consumer is King, Universal Law Publishing Company
- 6. Girimaji, Pushpa (2002). Consumer Right for Everyone Penguin Books.
- 7. E-books: www.consumereducation.in
- 8. Empowering Consumers e-book,
- 9. ebook, www.consumeraffairs.nic.in

10. The Consumer Protection Act, 1986 and its later versions. www.bis.org

Articles

- 1. Misra Suresh, (Aug 2017) "Is the Indian Consumer Protected? One India One People.
- 2. Raman Mittal, Sonkar Sumit and Parineet Kaur (2016) Regulating Unfair Trade Practices: An Analysis of the Past and Present Indian Legislative Models, Journal of Consumer Policy.
- 3. Chakravarthy, S. (2014). MRTP Act metamorphoses into Competition Act. CUTS Institute for Regulation and Competition position paper. Available online at <u>www.cuts-</u> international.org/doc01.doc.
- 4. Kapoor Sheetal (2013) "Banking and the Consumer" Akademos (ISSN 2231-0584)
- 5. Bhatt K. N., Misra Suresh and Chadah Sapna (2010). Consumer, Consumerism and Consumer Protection, Abhijeet Publications.
- 6. Kapoor Sheetal (2010) "Advertising-An Essential Part of Consumer's Life-Its Legal and Ethical Aspects", Consumer Protection and Trade Practices Journal, October 2010.
- 7. Verma, D.P.S. (2002). Regulating Misleading Advertisements, Legal Provisions and Institutional Framework. Vikalpa. Vol. 26. No. 2. pp. 51-57.

Periodicals

- 1. Consumer Protection Judgments (CPJ) (Relevant cases reported in various issues)
- 2. Recent issues of magazines: International Journal on consumer law and practice, National Law School of India University, Bengaluru
- 3. 'Consumer Voice', Published by VOICE Society, New Delhi.

Websites:

www.ncdrc.nic.in

www.consumeraffairs.nic.in www.iso.org. www.bis.org.in www.consumereducation.in www.consumervoice.in www.fssai.gov.in <u>www.cercindia.org</u>

<u>SEMESTER – V</u>

Category	Course Type	Course Code	Course T	itle	Conta Hou		Credit (C)			
Part – III	Core: XIV	23PHU14	Solid State F	Physics	72	2	5			
Contact he	ours per wo	eek: 6								
Year	5	Semester	Internal Marks	Externa Marks		Τα	tal Marks			
THIRD)	V	25	75			100			
Preamble: To motivat research st Course Ou										
COs		Knowledge Level								
CO1	ı's	K1								
CO2	summarize constant a	e the types of cr nd displacemen conductivity – '	uperconducting ma rystals, Miller indi at vector, Thermod Thermal conduction	ces, Dielect lynamic effe	ect,		K2			
CO3	Sommerfie calculate t	eld model he value of hall	law and Dulong an l co-efficient using 1 theory in conduct	g hall effect			K3			
CO4	1	K4								
CO5		K5								
K1 – I	CO5determine Crystal structure for SC, HCP, BCC, FCC, NaClK5K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluat									
	СО-РО	MAPPING (C	COURSE ARTIC	ULATION	MATI	RIX)				

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	3	3	3	1
CO4	9	9	3	3	3	3	1
CO5	9	9	3	3	3	1	1
Total Contributio n of COs to POs	45	45	33	27	27	13	9
Weighted Percentage of COs Contributio	2.60	2.96	2.39	2.34	3.03	1.82	1.26
n to POs Level of corre	lation: 0 –	No correla	tion: 1 – L	ow correla	tion: 3 – N	ledium cor	relation:

No correlation; 1 9- High correlation between COs and Pos

COURSE CONTENT

UNIT I – Crystal Structure

Crystal structure –Unit cell–Number of lattice points per unit cell –Bravais lattice –Miller indices- Elements of symmetry - Structure of NaCl crystal - Atomic Packing - Atomic Radius – Lattice constant and Density – Crystal structure (sc, hcp, bcc, fcc)

UNIT II- Crystallography & Thermal Properties of solids (15 Hours)

X-rays: Bragg's law – Experimental methods in X- ray diffraction: Laue Method- Rotating crystal method – Powder Photograph methods

Dulong and Pettit's law - Einstein's theory of specific heat of solids -Debye theories of specific heat of solids

UNIT III- Magnetic Properties of Materials

Dia, Para, Ferri and Ferromagnetic Materials, Classical Langevin Theory of dia and Paramagnetic Domains - Quantum Mechanical Treatment of Paramagnetism - Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains - Discussion of B-H Curve - Hysteresis and Energy Loss

UNIT IV - Free Electron Theory

Free electron theory - Drude Lorentz theory - Explanation of Ohm's law - Electrical conductivity - Thermal conductivity - Wide-Mann and Franz ratio - Sommerfield model -Hall effect – Hall voltage and Hall coefficient – Mobility and Hall angle – Importance of Hall effect – Experimental determination of Hall coefficient

UNIT V- Dielectrics and Superconductivity

Dielectrics-Dielectric constant and displacement vector-Clausius mossotti relation - Atomic or molecular Polarizability- Types of Polarizability- Super conductivity: Phenomenamagnetic properties - High T_c Superconductivity- Meissner effect- Experimental facts -Isotopes effect- Thermodynamic effect

(14 Hours)

(15 Hours)

(14 Hours)

(14 Hours)

Text Books

- 1.Solid State Physics– Gupta and Kumar, 9 th Revised Edition, 2016, K. Nath & Co, Meerut (Unit 1-5)
- 2. Modern Physics– R Murugesan, 2018, S. Chand & Co (Unit 1-5)

Reference Books

- 1. Introduction to Solid State Physics CharlesKittel, 8th Edition, 2004, Wiley India Pvt.Ltd
- 2. Solid State Physics- A J Dekker, 1999, Macmillan India Pvt Ltd.,
- Elements of Solid-State Physics J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
- 4. Introduction to solids -Leonid V.Azaroff, 2004, Tata Mc-Graw Hill
- 5. Solid State Physics Neil W.Ashcroft and N.DavidMermin, 1976, Cengage Learning
- 6. Solid State Physics -Rita john,2014, McGraw Hill

Web References

- 1. https://www.uou.ac.in > science > MSCPHY-17
- 2. https://ccsuniversity.ac.in > bridge-library > pdf
- 3. https://www.hansrajcollege.ac.in > elearning > Lec..
- 4. http://vskub.ac.in > wp-content > uploads > 2020/04
- 5. https://en.wikipedia.org/wiki/Free_electron_model
- 6. http://engineeringphysics.weebly.com/uploads/8/2/4/3/8243106/unit_iii_electron_theor y.pdf
- 7. https://www.studocu.com/in/document/panjab-university/quantum-mechaniccs/free-electron-theory-lectures-with-examples/10891195
- 8. https://www.youtube.com/watch?v=gXoH0_G8BvY
- 9. https://slideplayer.com/slide/8038358/
- 10. https://www.slideshare.net/ALAMIN208/free-electron-theory
- 11. https://sites.google.com/site/puenggphysics/home/unit-5/hall-effect
- 12. https://www.arsdcollege.ac.in/wp-content/uploads/2020/05/Hall-Effect.pdf
- 13. https://www.slideshare.net/GyanraoPhysics/sommerfeld-model-maya-yadav-ppt
- 14. https://hmmcollege.ac.in/uploads/Clausius_Mossotti_Debye_Equation.pdf
- 15. https://opentextbc.ca/universityphysicsv3openstax/chapter/superconductivity/
- 16. https://www.britannica.com/science/superconductivity/Magnetic-and-electromagnetic-properties-of-superconductors#ref912874
- 17. https://www.slideshare.net/AkelRidha/superconductivity-a-presentation

Category	Course Type	Course Code	Course T	`itle	Contact Hours	Credit (C)
Part – III	Core: XV	23PHU15	Electronic Communic		72	5
Contact ho	ours per wo	eek: 6				
Year Semester		Internal Externa Marks Marks		· · ·	otal Marks	

THIRD)		V	25			75		1	00
							bout various			
Course Ou	itcon	ne: After o	completion	of the cours	se, the	learn	ers will be a	able to)	
COs			Co	ourse State	ment					owledge Level
CO1	reco	gnize the	concepts of	basic elect	ronic c	omp	onents			K1
CO2	dem	terpret about the essentials of AM and FM modulation and K2 modulation								
CO3	com	ponents li	ke diodes, l	LED, transi	stors, F	ET a				K3
CO4		-		transistor ic compone	-	g, co	onstruction	and		K4
CO5	worl	nalyze, evaluate and to compare the concepts behind the vorking of amplifiers, oscillators, semiconducting diodes, ectifiers and filters K5								
K1 – F	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate									
CO-PO MAPPING (COURSE ARTICULATION MATRIX)										
POs COs		PO1	PO2	PO3	PO	4	PO5	PO	6	PO7
CO1		9	9	9	9		3	3		.3
CO2		9	9	9	3		3	3		3
CO3		9	3	9	3		3	3		1
CO4		9	3	9	3		9	3		3
CO5		9	3	3	1		3	1		3
Total Contributi n of COs t POs		45	27	39	19		21	13	3	13
Weighted Percentage of COs Contributi		2.60	1.77	2.83	1.6	5	2.36	1.8	32	1.83
Level of co	n to POs									
	COURSE CONTENT									
UNIT I - Diodes, Rectifiers and Filters (15 Hours) Characteristics of PN Junction diode – Half Wave Rectifier – Efficiency and Ripple Factor										

Characteristics of PN Junction diode – Half Wave Rectifier – Efficiency and Ripple Factor –Centre Tapped Full Wave Rectifier – Bridge Rectifier – Efficiency and Ripple Factor – ZenerDiode –Zener Voltage Stabilization – Applications of diodes – clipper and clamper circuits.Filter Circuits: Capacitor Filter – Choke input Filter – Capacitor input Filter (Pi Filter) Special Purpose Diodes: LED – Photodiode – Tunnel Diode

UNIT II - Transistors and Transistor Biasing

Transistor action – Expression for collector current in common base and common emitter connections – Relation between α and β – Characteristics of CE connection – Transistor line analysis – DC load line – Operating point -Need for transistor biasing – Stabilization – Essentials of transistor biasing circuit – Stability factor– Base resistor method of transistor biasing – Voltage divider biasing

UNIT III - Amplifiers and Oscillators

Single stage transistor amplifier – Practical circuit of amplifier – Phase reversal – Load line analysis - Classification of amplifiers – RC coupled amplifier - Amplifier with negative feedback- Feedback – Principle of negative feedback amplifier – Gain - Sinusoidal Oscillator – Types – Oscillatory circuit – Positive feedback – Barkhausen criterion – Colpitt's oscillator – Hartley oscillator – Phase-shift oscillator – Wein Bridge oscillator **UNIT IV- FET, UJTand Multivibrators** (14 Hours)

JFET – Difference between JFET and BJT – Principle and working of JFET – output characteristics – Parameters of JFET- MOSFET – Working – Depletion and Enhancement mode - UJT – Construction and operation – Characteristics of UJT – Advantages – UJT as Relaxation Oscillator - Multivibrator – types – Astable – Monostable – Bistable multivibrators

UNIT V – Modulation and Demodulation

Modulation – Types – Amplitude Modulation – Modulation factor – Analysis of AM wave – Side band frequencies in AM wave – Transistor AM modulator – Power – Limitations of AM – Frequency Modulation –Demodulation – Essentials in demodulation – AM diode detector – AM radio receivers – Superheterodyne receiver – Advantages

Text Books

- 1. Basic Electronics (Solid State) B.L. Theraja, 1995, S. Chand & Co. Ltd (Unit 1-3)
- 2. A textbook of Applied Electronics R.S. Sedha, 1999, S. Chand & Co. Ltd(Unit 1-3)
- 3.. Electronic communications Modulations of Transmission, Prentice –Hall of India (Unit 5)
- 4.. Handbook of Electronics, Gupta and Kumar, Pragati Prakashan, Meerut (Unit 1-5)

Reference Books

1. Principles of Electronics – VK Mehta and Rohit Mehta, 2005, S. Chand & Co. Ltd., (Unit 1, 2, 3)

Web References

- 1. https://nptel.ac.in/courses/122/106/122106025/
- 2. https://byjus.com/physics/modulation-and-demodulation/

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)				
Part – III	Core: XVI	23PHU16A/ 23PHU16B/ 23PHU16C	Institutional training/ Articleship Training/ Mini Project		1				
Contact he	Contact hours per week:								

(14 Hours)

(14 Hours)

(15 Hours)

Year	Sen	nester	Intern Mark		External Marks	1	otal	Marks
THIRD		V	100				1	00
Preamble: T Training, Min						al train	ning,	Industrial
Course Outc	ome: After	completion	of the cours	se, the learn	ners will be	able to)	
COs Course Statement								owledge Level
	lentify the raining, Indu	-		s related	to Instituti	onal		K1
	xplain the prunch the prunch the tension of the second sec	-			Mini projec	ts &		K2
CO3 ez	solve the problems in concerned project works & also Produce excellent project report for both Institutional Training & Mini projects							K3
CO4 ez	examine different types of problems, principles, Experimental techniques & applications of concerned project works							K4
CO5 go	esign new enerations& echnology							K5
K1 – Re	member; K	2 – Unders	tand; K3 –	Apply; K	4 – Analyze	; K5 -	- Eva	luate
	CO-PO MA	APPING (C	COURSE A	RTICULA	ATION MA	TRIX	()	
POs COs	PO1	PO2	PO3	PO4	PO5	PO	6	PO7
CO1	9	9	9	9	9	9		9
CO2	9	9	9	9	9	9		9
CO3	9	9	9	9	9	9		9
CO4	9	9	9	9	9	9		9
CO5	9	9	9	3	3	3		3

9- High correlation between COs and Pos

45

2.60

Category	Course
----------	--------

Total

POs Weighted Percentage of COs Contributio

n to Pos

Contributio

n of COs to

45

2.96

45

3.27

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation;

39

3.38

39

4.38

39

5.47

39

5.48

	Туре	Code				Hours			
Part – III	Core: XVII Open Elective	****	D (Offered	PHYSICS IN DAY TO DAY LIFE (Offered for students of other Departments) 48				2	
Contact h	Contact hours per week: 4								
Year		Semester	Intern Mark		External Marks]	Fotal Marks		
	mble: To demonstrate knowledge and understanding of the fundamental co							00 cepts in	
Physics Course Ou	itcome: A	fter completi	on of the cour	se, the lear	ners will	be able to)		
COs			Course State	ment				nowledge Level	
CO1	Magnetis	identify the measurements, Electric Current, Electricity, Magnetism, Electrolysis, Magnetic field effect and Natural K1 Phenomena's in Atmosphere							
CO2	Motion,	blain the concepts in Electricity, standard units and Types of btion, Electric power, Effects of current and Magnet, K2 htning, thunder, water harvesting, coal and petroleum							
CO3	perform magnetism	erform different SI units in measurement, electricity and agnetism, electric potential, resistance, chemical effect of K3 lectric current and magnetism							
CO4	Resistanc		ements of d reaction of t ites,			•		K4	
CO5	-		ng, electric (ism, Natural R		aws in I	Physics,		K5	
K1 – 1	Remembe	r; K2 – Und	erstand; K3 -	- Apply; K	4 – Anal	yze; K5 -	– Eva	aluate	
	CO-PC	MAPPING	G (COURSE A	RTICUL	ATION N	MATRIX	()		
POs COs	РО	1 PO2	PO3	PO4	PO5	PC	6	PO7	
CO1	9	9	9	9	3	3		1	
CO2	9	9	9	3	3	1		1	
CO3	9	9	3	3	2	1		1	
CO4	9	3	3	1	1	1		1	
CO5	3	3	3	1	1	1		1	
Total Contribut n of COs t POs	19	33	27	17	10	7		5	

Weighted Percentage of COs							
Contributio n to POs	2.25	2.17	1.96	1.47	1.12	0.98	0.70

COURSE CONTENT

UNIT I - Motion and Measurements of Distances

History of Transportation-Measurement of Length – Distance-Conventional Methods of Measurement-Standard Units of Measurement-Types of Motion

UNIT II - Electricity

Electric current-Electric circuit-Components of basic electric circuit: Cell, Switch, and Bulb Conductor-Insulator-Electric potential and potential difference-Circuit diagram-Ohm's law Factors on which the resistance of conductor depends-Resistance of a system of resistors-Heating effect of electric current-Electric power

UNIT III - Chemical Effects of Electric Current and Magnetism(10 Hours)Conduction of Electricity-Conduction of Electricity in Liquids – Electrolysis-Electrolysisand Electroplating - Discovery of Magnets-Magnet-Poles of a magnet-Like poles repel andunlike poles attract Magnetic Field of Earth and Compass

UNIT IV - Some Natural Phenomena

(9 Hours)

(9 Hours)

(10 Hours)

(10 Hours)

Lightning-Charging by rubbing-Transfer of Charge-The Story of Lightning-Lightning Safety Phenomena related to earthquakes-Protection against earthquakes

UNIT V - Management of Natural Resources

Save the Environment from Environmental Pollution – Reuse– Recycle-Why do we need to manage our natural resources-Forest and wildlife-Sustainable management-Water for all : dam-Water harvesting-Coal and petroleum

Reference Book

1. Monograph – Department of Physics

Web reference

1.https://www.researchgate.net/publication/277130091_Energy_Resources_Indian_Scenario

2.https://www.aps.edu/energy-conservation/energy-lessons-and-games/energy-lessons-and-games/26 HS-IssueOfRenewableEnergy.pdf

3. https://ncert.nic.in/textbook/pdf/hesc114.pdf

4. https://www.learncbse.in/motion-and-measurement-of-distances-class-6-notes/

5. <u>https://web.njit.edu/~vitaly/121/notes121.pdf</u>

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)		
Part – III	Core: XVIII Elective I	23PHU17A	Digital Electronics and Microprocessor	60	4		
Contact hours per week: 5							

Year		Sem	lester	Interna Marks		External Marks	Te	otal Marks	
THIRE)		V	25		75		100	
Preamble: circuits &		-		ic knowledg	e of bina	ary addition, co	ombina	ations of logic	
Course O	utcom	ne: After o	completion	of the course	e, the lea	arners will be a	ble to		
COs				ourse Staten				Knowledge Level	
CO1	binar recal desc	ry arithme ll De-Mor ribe basics	tic gan's theor s of flip-flo	ems and me ps and micro	mory de	sors		K1	
CO2	arith	metic circ	uits and ins	structions in	micropr		ites,	К2	
CO3	App flip-	ly Boolea flops and	n algebra a memory de	vices.	tes for t	he construction	n of	К3	
CO4	Anal	yze the ar	chitecture a	and working	of micr	-		K4	
CO5		construct a circuit by analyzing the logic gate operations and K5 flip-flops. Program the 8085 Microprocessor							
K1 – 1	Reme	mber; K2	2 – Underst	tand; K3 – J	Apply;]	K4 – Analyze;	K5 –	Evaluate	
	C	D-PO MA	APPING (C	COURSE AI	RTICUI	LATION MAT	FRIX))	
POs COs		PO1	PO2	PO3	PO4	PO5	PO	6 PO7	
CO1		9	9	9	9	9	9	9	
CO2		9	9	9	3	9	3	9	
CO3		9	9	9	3	9	3	3	
CO4		9	9	3	1	3	1	3	
CO5		9	3	3	1	1	1	1	
Total Contribut n of COs t POs		45	39	33	17	31	17	25	
Weighted Percentag of COs Contribut n to POs		2.60	2.56	2.39	1.47	3.48	2.38	3 3.51	
			No correla een COs a		ow corre	elation; 3 – Me	edium	correlation;	
COURSE	CON	TENT							

UNIT I - Number System and Codes (12 Hours) Binary - Octal - Decimal - Hexa decimal number systems - Conversion of one number system into other. Codes- BCD codes -Gray code -ASCII Code Arithmetic operation - Binary addition- Binary subtraction - 1's complement subtraction-2's complement subtraction – Binary to Gray code converter – Gray to Binary converter. Logic gates: OR, AND, NOT, NAND, NOR, Ex-OR, Ex-NOR gates – Universal building blocks **UNIT II - Boolean algebra and Arithmetic circuits** Basic laws - Boolean addition and multiplication - properties - De Morgan's theorems-Minimization using algebraic method – Sum of Product method – Karnaugh map and its simplifications - Product of Sum method-Arithmetic circuits - Half adder - Full adder -Half subtractor – K map simplifications A/D and D/A Converters and Memory Devices: A/D Converters- D/A Converters-Memory Devices: Classification of memories -ROM-PROM, EPROM, EEPROM, RAM (Basic ideas only) **UNIT III - Flip-flops and their applications** (12 Hours) SR flip-flop- Clocked SR flip flop – D flip-flop – JK flip-flop – T flip-flop – Triggering of flip-flops – Level triggering – Edge triggering – Master slave JK flip-flop Applications: Shift Registers - 3 and 4 bit shift registers - Counters - Asynchronous counters – Synchronous counters – MOD-3, MOD-6, MOD-10 counters **UNIT IV - Microprocessors** (12 Hours) 8085 microprocessors – Microprocessor communication and bus timings – Demultiplexing the bus AD7-AD0 - Generating control signals - A detailed architecture of 8085 microprocessor - 8085 machine cycles and bus timings - Op-code fetch machine cycle -Memory read machine cycle –Memory interfacing: Memory structure and its requirements - Basic concepts in memory interfacing - Address decoding - interfacing circuit - Address

UNIT V- Programming the 8085

decoding and memory address

8085 programming model – Instruction classifications – Instruction and data format – 8085 Instructions: Data transfer operations - Logic operations - Branch operations -Programming techniques - Looping, counting and indexing - Additional data transfer and 16-bit arithmetic instructions - Counters and time delays - Simple programs - Addition, subtraction, multiplication, division, setting bits, masking bits

Text Books

- 1. Digital circuits and Design S.Salivahanan and S.Arivazhagan, 3rd Edition, 2007, Vikas Publisher (Unit 1,2,3)
- 2. Digital principle and Applications-Malvino and Leach, 4th Edition1993, Tata McGraw-Hill Publishing Company Ltd (Unit 1)
- 3. Microprocessor Architecture, Programming and applications with the 8085 Ramesh
- S. Gaonkar, 3rd Edition, 1997, Penram International Publisher (Unit 4,5)

Reference Books

1. Handbook of Electronics - Gupta and Kumar, 2012, Pragati Prakashan, Meerut

2. Introduction to Microprocessors - A.P. Matur, 3rd Edition, 1996, Tata McGraw-Hill Publishing Company Ltd

Web References

(12 Hours)

(12 Hours)

1.https://www.tutorialspoint.com/computer_logical_organization/digital_number_system.ht m (unit 1)

2. https://www.allaboutcircuits.com/textbook/digital/chpt-7/boolean-arithmetic/ (unit 2)

3. www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d (unit 3)

4.https://www.tutorialspoint.com/microprocessor/microprocessor_8085_architecture.htm (unit 4)

5.https://www.technicalsymposium.com/microprocessor_lab.pdf&ved=2ahUKEwinnouv0q PzAhX8qJUCHc_rDzsQFnoECBIQAQ&sqi=2&usg=AOvVaw3_gyq42mqYnRkGBTvqY e1S (unit 5)

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: XVIII Elective I	23PHU17B	Soil Physics	60	4

Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
THIRD	V	25	75	100

Preamble: The aim is to provide the student to gain deeper knowledge and understanding of mechanical properties of soils and learn information about transfer processes in soils then know about the saturated and unsaturated soils

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
CO1	outline the importance of soil physics	K1
CO2	summarize the properties of soil and water flow in soil	K2
CO3	apply physics laws to study the properties of soil use mathematical models to quantify transfer processes for air, water, and solutes in saturated soils	К3
CO4	analyze the transfer processes for air, water, and solutes in water unsaturated soils	K4
CO5	estimate and measure the various properties of soil using various mathematical models	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

CO-PO MAPPING (COURSE ARTICULATION MATRIX) POs **PO1 PO2 PO3 PO4 PO5 PO6 PO7** COs 9 9 9 9 9 9 9 **CO1** 9 9 9 9 9 **CO2** 3 3

CO3	9	9	9	3	9	3	3
CO4	9	9	3	1	3	1	3
CO5	9	9	3	1	1	1	1
Total Contributio n of COs to POs	45	45	33	17	31	17	25
Weighted Percentage of COs Contributio n to POs	2.60	2.56	2.39	1.47	3.48	2.38	3.51
I evel of come	lation. A	No ooweolo	Hans 1 T		tions 2 N	fadinna aan	malations

COURSE CONTENT

UNIT I - Introduction

Soil Physics before the 70s-Soil Physics in relation to Natural Sciences and Soil Science-How to acquire Physics knowledge by Scientific Methods-Application of Physics laws in Soil Physics- Fundamental and derived physical quantities and System of units

UNIT II - Basic Physical Properties of Soils

Soil as a porous medium, volume and mass relationship- Soil texture- specific surface areasoil structure and aggregation- Pore size and distribution- pore geometry

UNIT III - Soil Water

General properties of water- Water rise in a capillary tube- Soil water content-Measurement of soil water content- Energy status of soil water-Soil moisture release curves-Measurement of soil water potential

UNIT IV - Water Flow in Saturated Soils

Driving force for water flow-Darcy flux and pore water velocity Darcy's law and Poiseuille's Law- Saturated hydraulic conductivity, permeability, and fluidity Vertical and horizontal water flow-Water flow in layered soils

UNIT V - Water Flow in Unsaturated Soils

Darcy's Law in unsaturated soils- Hydraulic conductivity as function of water content and potential- Estimation of hydraulic functions and diffusivity from soil moisture release curves and from particle-and pore size distribution- Equation of continuity and Richard's equation- Steady and unsteady water flow- Infiltration, redistribution and evaporation **Text Books**

- 1. Text book of soil physics Arunkumarsaha Anuradha saha, 2012, Kalyani Publisher
- 2. Soil physics an introduction Manoj K.Shukla, 2013, CRC press
- 3. Principles of soil physics Rattan Lal, Manoj K. shukla, 2004, CRC press
- 4. Environmental Soil Physics, by Daniel Hillel, 1998. Academic Press, Inc. San Diego, California

Web References

1. https://passel2.unl.edu/view/lesson/0cff7943f577/10 (Unit 1, 3 and 2)

2. http://ecoursesonline.iasri.res.in/mod/page/view.php?id=1996 (unit 4 and 5)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

3. www.soilphysicsnotes.com

C (Course	Course	Course Title		Contact					
Category	Туре	Code	Co	urse T	Itle Hours		urs	Credit (C)		
Part – III	Core: XVIII Elective I	23PHU17C	Ge	Geo Physics 60		60	4			
Contact h	ours per wo	eek: 5								
Year	1	Semester	Intern Mark		External , Marks		То	Total Marks		
THIRD)	V	25		75			100		
		to provide the e & fossil anim		gain dee	eper knowle	edge i	n geol	ogic	cal	
Course Ou	ıtcome: Af	ter completion	of the cour	se, the l	earners wil	l be al	ble to			
COs	Course Statement							Knowledge Level		
CO1	recall the structure of earth recollect the Definition of earthquakes, seismographs, fossils								K1	
CO2	discuss about the origin and structure of earth								K2	
CO3	distinguish plateaus and plains. explain the importance of invertebrates and classifications of K3 vertebrates									
CO4	infer the to	K4								
CO5	criticize the evolution of man, elephant and horse and the flora of India								K5	
K1 – I	Remember	; K2 – Unders	tand; K3 –	Apply	; K4 – Ana	alyze;	K5 –	Eva	luate	
	СО-РО	MAPPING (C	COURSE A	RTICU	ULATION	MAT	(RIX)			
POs COs	POI	PO2	PO3	PO4	4 PO	5	PO6	5	PO7	
C01	9	9	9	9	9		9		9	
CO2	9	9	9	3	9		3		9	
CO3	9	9	9	3	9		3		3	
CO4	9	9	3	1	3		1		3	
CO5	9	9	3	1	1		1		1	
Total Contribut n of COs t POs	45	45	33	17	31		17		25	

Weighted							
Percentage							
of COs							
Contributio	2 (0	0.56	2 20	1 47	2 40	2 20	2.51
n to POs	2.60	2.56	2.39	1.47	3.48	2.38	3.51

COURSE CONTENT

(12 Hours) **UNIT I - Physical Geology I** Origin of the Earth - Age of the Earth - Interior of the earth - Structure and constitution of the interior of the earth - Earthquakes: Definition - Effects - Causes - Earthquake waves and their transmission - Seismographs - Distribution of earthquake belts - Volcanoes: Distribution - Causes - Effects of volcanic eruptions - Concepts of Plate Tectonics **UNIT II - Physical Geology II** (12 Hours) Mountains: Origin - Types - Characteristics - Distribution - Types of Plateaus and Plains -Weathering: Types - Products **UNIT III- Structural Geology** (12 Hours) Introduction to Structural geology: Topographic maps - Geologic maps - Outcrops and their topography - Clinometer compass and its uses - Representation of attitude of beds **UNIT IV- Paleontology I** (12 Hours) Definition of fossil -Nature and modes of preservation of fossils - Uses of fossils - General Morphology, classification, geological history and stratigraphical importance of the following invertbrates: Corals, Echinoids, Crinoids and Blastoid - Pelecypods and Cephalopods **UNIT V- Paleontology II** (12 Hours) Brachilopods - Trilobites - Graptolites - A brief outline on the classification of vertebrates -A very short account of the evolution of Man, Elephant and horse - Gondwana flora of India - An outline of the uses of Micropaleontology **Text Books** 1. Principles of Physical Geology - Arthur Holmes, Thomas Nelson and Sons Ltd., London, 1965 2. Elements of Structural Geology - E. Sherbon Hills, Champan and Hall Ltd. and Science Paperback, 1963 3. An outline of Structural Geology by Bruce E. Hobbs, Winthrop D. Means and Paul F.Williamsn, John Wiley and Sons, New York, 1976 4. Vertebrate Palaeontology - A.S. Romer, 1960, Chicago Press 5. Invertebrate Palaeontology - Henry Woods, 1967, Cambridge University Press, Cambridge Web References

1.https://www.google.com/url?sa=t&source=web&rct=j&url=https://www.britannica.com/s cience/earthquake-geology&ved=2ahUKEwjq6e-

o2qPzAhVixjgGHcDDBq4QFnoECBEQAQ&usg=AOvVaw0LdsfkYa1J-

XldjcBK8wLW&cshid=1632902130394 (unit 1)

2.https://www.clearias.com/major-landforms-mountains-plateaus-plains/ (unit 2)

3.http://www.neotectonica.ufpr.br/geologia/1.pdf&ved=2ahUKEwj2rsmU26PzAhXx4jgGH T6RBSAQFnoECAMQAQ&usg=AOvVaw0HgFAdXaQoRMQTGutrzbyJ (unit 3) 4.https://cohsem.nic.in/docs/subjects/34_Geology.pdf&ved=2ahUKEwi2nIHP26PzAhWc4 zgGHdLdDc4QFnoECA0QAQ&usg=AOvVaw1b6t1aYjGNT1Jxp9S2mUol (unit 4) 5.https://www.bgs.ac.uk/discovering-geology/fossils-and-geological-time/ brachiopods/&ved=2ahUKEwjHqdmw4KPzAhUX63MBHf6MCEcQFnoECCsQAQ&usg= AOvVaw0RTv6_h4-IBNSNMpFYKzJc (unit 5)

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
IV	Skill Enhance ment Course: II	23SEU02	Life Skills (Jeevan Kaushal) (Curriculum as recommended by UGC)	36	1

Contact hours per week: 3

Year	Semester Internal Marks		External Marks	Total Marks
THIRD	V	50		50

Preamble: To inculcate both personal and professional skills in the students in the areas of understanding of self and others, interpersonal skills, high performance teams, leadership potential, communication & presentation skills, techniques of problem solving, decision making, fostering creativity and innovation for personal and professional excellence, stress management, time management and conflict management and inculcation of human values

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
CO1	identify the common communication problems, what good communication skills are and what they can do to improve their abilities	K1
CO2	demonstrate communication through the digital media	K2
CO3	prepare themselves to situations as an individual and as a team	K3
CO4	analyse various leadership models, strengths and abilities to create their leadership vision	K4
CO5	appraise their potential as human beings and conduct themselves properly in the ways of the world	K5
K1 –	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 -	- Evaluate

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7			
C01	3	9	3	1	3	3	1			
CO2	1	9	3	1	3	9	1			
CO3	1	3	3	3	9	3	3			
CO4	1	3	3	3	9	9	3			
CO5	1	3	3	1	3	1	9			
Total Contributio n of COs to POs	Contributio 7 27 15 9 27 25 17									
Weighted Percentage of COs Contributio	0.40	1.77	1.09	0.78	3.03	3.51	2.39			
n to POs										
9- High correl COURSE CO		een COs a	nd Pos							
UNIT I							(8 Hours)			
Communicatio	on Skills: I	istening.	Speaking, 1	Reading. V	Vriting and		· · · · · · · · · · · · · · · · · · ·			
writing		, _	-p8, -	, ,						
UNIT II							(7 Hours)			
Digital Comm				-	iteracy, Ef	fective use	of Social			
Media, Non-ve	erbal comm	unication, I	Presentation	n Skills						
UNIT III Team Skills: 7	Fruct and C	allaboration	n Listoning	as a Taam	Skill Proje		(5 Hours)			
Cultural Etique			-	, as a Tealli	SKIII, DI ali	istorning, i	Social allu			
UNIT IV	secos, meen	ur commu	neution				(8 Hours)			
Leadership and	d Managen	nent Skills:	Leadership	o Skills, Ma	anagerial S					
Skills, Innovat	ive Leaders	hip and De	sign Thinki	ng						
UNIT V							(8 Hours)			
Universal Hu					Violens P	i a l e4				
Ethics and Int Service, Renur		-	passion, Ir	uth, Non-V	violence, R	Ighteousne	ss, Peace,			
Mountains: Or			eristics - D	istribution	- Types of	Plateaus ar	nd Plains -			
Weathering: T				Buioution	Types of	i iutouus ui				
Text Books	• •									
1. Sen Madh 2. Silvia P. J				n to Critical erican Psyc	0					
Washingto			-		U U	,				
3. Sinek S. (2009). Start with Why: How Great Leaders Inspire Everyone to Take Action. Penguin										

4. Kelly T., Kelly D. (2014). Creative Confidence: Unleashing the Creative Potential Within Us

Reference Books

1. Elkington, J., & Hartigan, P. (2008). The Power of Unreasonable People: How Social Entrepreneurs Create Markets that Change the World. Harvard Business Press

Web References

- 1. Developing Soft Skills and Personality :https://www.youtube.com/playlist?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- 2. Course on Leadership https://nptel.ac.in/courses/122105021/9
- 3. https://www.ugc.ac.in/e-book/SKILL%20ENG.pdf
- 4. Knowledge@Wharton Interviews Former Indian President APJ Abdul Kalam . "A Leader Should Know How to Manage Failure" – www.youtube.com/ watch?v=laGZaS4sdeU
- 5. Martin, R. (2007). How Successful Leaders Think. *Harvard Business Review*, 85(6): 60.
- 6. Fries, K. (2019). 8 Essential Qualities That Define Great Leadership. *Forbes*. Retrieved 2019-02-15
- 7. How to Build Your Creative Confidence, Ted Talk by David Kelly https://www.ted.com/talks/david_kelley_how_to_build_your_creative_confidence

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
	Proficie				
Part – V	ncy	23PEU01	Lasers		2
Fait – V	Enhance		(Self-Study)		2
	ment				

Contact hours per week: --

Year	Semester	Internal Marks	External Marks	Total Marks
THIRD	V		100	100

Preamble: The aim is to provide the students to know the principles of laser light and also the applications of Lasers

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
C01	define Absorption, Emission, Population Inversion, Coherence, LASER, Semiconductor, Diode	K1
CO2	explain the phenomenon fluorescence, stimulated emission, working of Population inversion, optical pumping, Gas Laser, Q Switched operation of Laser	K2
CO3	illustrate the properties of Laser light in Cavity dumping, Diode doped solid state laser, Organic dye lasers, chemical lasers.	К3
CO4	investigate the Interaction of Radiation and Matter, working of	K4

	Gas Laser and Semi-Conductor Laser, Resonant Cavity	
CO5	compare the various forms of Diode, Stimulated emission and Absorption. discuss X ray Laser and Tunable Laser	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	3	3	9
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	3	3	3
CO5	9	9	3	3	3	3	3
Total Contributio n of COs to POs	45	45	39	39	21	21	27
Weighted Percentage of COs							
Contributio n to POs	2.60	2.96	2.83	3.38	2.36	2.95	3.79

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

COURSE CONTENT

UNIT I -Fundamentals of Lasers

Electromagnetic radiation – energy levels – Interaction of radiation and matter – fluorescence, absorption, stimulated emission

UNIT II – Physics of Laser

Population inversion – optical pumping- excitation by electron collisions – resonant transfer of energy – resonant cavity

UNIT III - Properties of laser light

Line width - collimation - spatial profiles of laser beams - temporal behavior of Laser output - Q switched operation - mode locked operation - cavity dumping - coherence - radiance - focusing properties of Laser radiation - power

UNIT IV - Gas Laser

He-Ne Laser – ionized gas laser – Molecular Laser (CO2) — Solid state lasers: Neodymium YAG Lasers- glass Lasers- Ruby Lasers

UNIT V - Semi conductor Laser

Semiconductor laser properties – Diode structures – diode doped solid state laser – Organic dye lasers – chemical lasers – X ray lasers – Tunable lasers

Text Books

1. Laser & Non – Linear Optics – B.B. Laud, 3 rdEdition - New age International

Publication (Unit 1-5)

2. Laser Systems and Applications – V.K.Jain, 2013, Narosa Publishing House(Unit 1-5)

Reference Books

- 1. Lasers and Optical fibre Communications P.Sarah, 2008, I.K.International Publishing House
- 2. Laser Physics S. Mohan, V. Arjunan, M. Selvarani, M. Kanahana mala, 2012, MJP Publishers

<u>SEMESTER – VI</u>

Category	Course Type	Course Code	Co	urse Titl	e	Con Ho	tact urs	Credit (C)	
Part – III	Core: XIX	23PHU18	Quantum R	Mechan elativity	ics and	7	2	5	
Contact hours per week: 6									
Year	5	Semester	Intern Mark		Externa Marks		To	otal Marks	
THIRD)	VI	25		75			100	
		the problem-s							
Course Ou	itcome: Af	ter completion	of the cours	se, the lea	rners wil	l be al	ble to		
COs Course Statement							Knowledge Level		
CO1 evoke wave properties of matter, basic principles of wave equation of the quantum mechanics and theory of relativity							K1		
CO2	O2 realize the concept of uncertainty principle, schrodinger's wave equation, operators in quantum mechanics							K2	
CO3	-	hrodinger's wa al problems	ave equation	n to solv	ve one, tv	vo, th	ree	K3	
CO4	•	nature of De	0	elation,	particle i	nab	ox,	K4	
CO5		dual nature of a onality of ener	,		n of wave	funct	ion	K5	
K1 – I	Remember	K2 – Unders	tand; K3 –	Apply; l	K4 – Ana	lyze;	K5 –]	Evaluate	
	СО-РО	MAPPING (C	COURSE A	RTICUI	LATION	MAT	RIX)		
POs COs	PO1 PO2 PO3 PO4 PO5 PO6						PO7		
CO1	9	9	9	9	9		3	3	
CO2	9	9	9	9	9		3 3		
CO3	9	9	3	3	9		3	3	

CO4	9	3	3	3	3	1	1
CO5	9	3	3	1	3	1	1
Total Contributio n of COs to POs	45	33	27	25	33	11	11
Weighted Percentage of COs Contributio n to POs	2.60	2.17	1.96	2.17	3.71	1.54	1.54

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

COURSE CONTENT

UNIT I - Wave Properties of Matter

Introduction – Phase velocity and Group velocity – Analytical expression for a group of waves –Nature of De'Broglie relation – Derivation of the De'Broglie relation – Phase velocity of De'Broglie waves – Relation between the Phase velocity and the wavelength of De'Broglie wave– De'Broglie wavelength associated with a particle of mass M and kinetic energy – Verification of De'Broglie relation – Davission and Germer's experiments – G P Thomson's experiments

UNIT II - Uncertainty Principle

Introduction – Uncertainty Principle – Elementary proof between – Displacement and Momentum – Energy and Time – Physical Significance of Heisenberg's Uncertainty Principle –Illustration – Diffraction of electrons through a slit – Gamma ray microscope through experiment – Application – Non-existence of free electrons in the nucleus – Size and Energy in the ground state of Hydrogen atom

UNIT III - Schrödinger's Wave Equation

Introduction – Wave function for a free particle – Schrödinger's One dimensional wave equation– Time-dependent and Time independent – Physical interpretation - Limitation – Normalization of wave function – Operators – Eigen function – Eigen Value – Eigen equation – Operator for Momentum, Kinetic Energy and Total Energy – Postulates of Quantum Mechanics –Orthogonality of Energy Eigen function – Proof – Probability current density – Ehrenfest'stheorem – Statement and proof

UNIT IV- Applications of Schrodinger's Equation(14 Hours)Particle in a box - Potential step –The barrier penetration problem – Linear harmonicoscillator - Significance of Quantum Numbers: Significance of various quantum numbers –n, l, ml- Electron probability density

UNIT V Special Theory of Relativity

Galilean Transformation equation – Ether Hypothesis – Michelson-Morley experiment – Explanation of the Negative results – special theory of Relativity – Lorentz transformation equation – Length contraction – Time dilation – Addition of Velocities – Variation of Mass with velocity – Mass energy equivalence.

General Theory of Relativity: General theory of relativity- Effect of gravitational field on a ray of light- Gravitational red shift- Black hole

(15 Hours)

(15 Hours)

(14 Hours)

(14 Hours)

Text Books

- Quantum Mechanics S. P Singh, M. K Bagde, C.Kamal Singh, 1stEdition, 2001, S.Chand & Co (Unit 1-4)
- 2. Concepts of Modern Physics Arthur Beiser, 5th Edition, 1995, Tata McGraw-Hill Publishing Company Ltd (Unit 5)

Reference Books

1. Quantum Mechanics - Leonard I. Schiff, 1968, Tata McGraw- Hill Publishing Company Ltd

Web References

- 1. https://www.ks.uiuc.edu/Services/Class/PHYS480/qm_PDF/QM_Book.pdf
- 2. https://scholar.harvard.edu/files/david-morin/files/waves_quantum.pdf
- 3. https://www-thphys.physics.ox.ac.uk/people/JamesBinney/qb.pdf

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: XX	23PHU19	Atomic and Nuclear Physics	72	5

Contact hours per week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
THIRD	VI	25	75	100

Preamble: The aim is to provide the student to acquire knowledge about atom, Nucleus and their properties. To motivate the students in order to apply the principles of radio activity in their research studies

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
CO1	mention the properties of positive rays, Periodic classification of elements, Zeeman effect, Paschen - Back effect, Stark effect, Radioactivity	K1
CO2	illustrate Thomson's Parabola method, Dempster's mass spectrograph, Aston's mass spectrograph, The Bohr atom model, Vector model, The Stern and Gerlach experiment, Larmor's theorem	K2
CO3	determine e/m of positive rays, to demonstrate the Atom Models, Magneto Optical Properties of Spectrum, Radioactivity, Nuclear Detectors and accelerators	К3
CO4	examine Positive rays, Periodic classification of elements, Fine Structure of the sodium D line, Alpha, Beta and Gamma rays, nuclear fission and fusion	K4
CO5	criticize mass defect and packing fraction of positive rays, the Critical Potentials, Magnetic dipole moment due to spin, Half- life period, Mean life period	K5

K1 – Rem	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate									
CO-PO MAPPING (COURSE ARTICULATION MATRIX)										
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7			
CO1	9	9	9	9	9	9	9			
CO2	9	9	9	9	9	9	9			
CO3	9	9	9	9	3	3	3			
CO4	3	3	3	3	3	3	3			
CO5	3	3	3	3	1	3	3			
Total Contributio n of COs to POs	33	33	33	33	25	27	27			
Weighted Percentage of COs										
Contributio n to POs	1.90	2.17	2.39	2.86	2.81	3.79	3.79			

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

COURSE CONTENT

UNIT I -Positive Rays

Positive rays – Discovery – Properties – Positive ray analysis – Thomson's Parabola method -action of Electric and Magnetic fields - Determination of e/m - determination of mass -discovery of stable isotopes- Limitations - Dempster's mass spectrograph -Aston's mass spectrograph- mass defect and packing fraction

UNIT II - Atom Models

The Bohr atom model – Critical Potentials – Method of excitation of atoms – Experimental determination of critical potentials by Davis and Goucher's method - Somerfield's relativistic model - Vector model-. Zeeman effect-Explanation from vector atom model -Pauli's exclusion principle - Periodic classification of elements

UNIT III - Magneto Optical Properties of Spectrum

Magentic dipole moment due to orbital motion of the electron – Magnetic dipole moment due to spin – The Stern and Gerlach experiment – Optical spectra – Fine Structure of the sodium D line – Zeeman effect – Experiments – Lorentz classical theory – Expression for the Zeeman shift – Larmor's theorem – Quantum mechanical explanation of the normal Zeeman effect - Anomalous Zeeman effect - Paschen - Back effect - Stark effect (14 Hours)

UNIT IV - Radioactivity

Natural Radioactivity : Alpha, Beta and Gamma rays - Properties - Determination of e/m of Alpha particle – Origin of Gamma rays – Laws of Radioactivity – Law of Radioactive disintegration - Half life period - Mean life period (Definitions, Expression) - Units of Radioactivity - Artificial Radioactivity - Preparation of radio elements - Application of

(15 Hours)

(14 Hours)

(15 Hours)

radio isotopes - Nuclear Fission and Fusion: Nuclear fission – Energy released in Fission – Bohr and Wheelers theory of Nuclear fission – Nuclear fusion

UNIT V - Nuclear Detectors

(14 Hours)

Principle and working of solid state detector - proportional Counter - Wilson's cloud chamber - Scintillation counter. Accelerators: Synchrocyclotron - Synchrotron - Electron synchrotron - proton synchrotron - Betatron

Text Books

- 1. Modern Physics by R. Murugesan, 2009, S.Chand& Co., (Unit 1-5)
- 2. Atomic Physics by J.B. Rajam, 2009, S.Chand& Co., (Unit 2)
- 3. Nuclear Physics by D.C.Tayal, 2002, Himalaya Publishing House. (Unit 5)

Reference Books

- 1. Modern Physics by Sehgal Chopra Sehgal, 8th Edition, 1998, Sultan Chand & Sons.
- 2. Concept of Modern Physics by Arthur Beiser, 5 th Edition, International Edition Mc Graw Hill Inc.,

Web References

- 1. https://www.britannica.com/science/atom
- 2. http://www.freebookcentre.net/physics-books-download/Nuclear-and-Particle-Physics-by-Axel-Maas.html
- 3. https://pdfgoal.com/downloads/nuclear_physics_by_dc_tayal_pdf
- 4. http://www.freebookcentre.net/physics-books-download/gotoweb.php?id=15436

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: XXI	23PHU20	Introduction to Space Physics	48	3

Contact hours per week: 4

Year	Semester	Internal Marks	External Marks	Total Marks
THIRD	VI	25	75	100

Preamble: The aim is to provide the student gain knowledge on astronomical backgrounds, astronomical concepts and Understand cosmic rays

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
CO1	develop the concepts of the Sun, Cosmic Rays, Galactic astronomy, stellar objects and age of stars	K1
CO2	explain about cosmic objects, milky way, Hubble telescope, Dwarf Galaxies, Composition of stars	K2
CO3	organize this learning about cosmic things in detecting about new forms and stars in astronomy and new finding of stars	К3
CO4	implement features of Sun temperature of corona, Hubble theory behind Hubble telescope, cosmic radiation time variation, classification of galaxies, luminous of stars, stellar revolution, nebula or supernova	K4

		-	of the Sun and age of		•	lactic	K5			
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate										
CO-PO MAPPING (COURSE ARTICULATION MATRIX)										
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7			
CO1	9	9	9	9	3	9	3			
CO2	9	9	9	9	9	3	3			
CO3	9	9	9	9	9	3	3			
CO4	9	9	9	9	3	3	1			
CO5	9	9	3	3	3	1	1			
Total Contributio n of COs to POs	45	45	39	39	27	19	11			
Percentage of COs Contributio n to POs Level of corre	Weighted Percentage of COs Contributio 2.60 2.96 2.83 3.38 3.03 2.66 1.54									
9- High correl		een COs a	nd POs							
UNIT I - The Introduction - layers - Comp activity and Su UNIT II - Intr Nature of Cos geomagnetic fi - time variation UNIT III - Ga Milky way - galaxies - Irreg UNIT IV - St Composition of Dependence - UNIT V - Ag Stellar Evoluti Fusion - Plane Stars-Pulsars-F	Sun Astronomic position - V inspot cycle roduction t smic rays ield on cosmic alactic astr Hubble tel gular galaxi ellar Objecto of Stars- V The colour e of Stars ion-Protosta tary Nebula	Visible feat es to Cosmic r - the originic rays - F rays onomy escope - C es - Dwarf ets Velocity, M index of a s ar - Main to a (or) Super	ures on the rays n of cosm Primary cost Classificatio galaxies - E ass and Si star - Lumir Sequence S rnova-Whit	e sun - Ter ic rays - (mic radiation n of galax Dark matter zes of Stan nosities of stan Star-Subgian e Dwarfs-N	nperature of Cosmic ray on - Second ies- Spiral rs-Types of tars - Age of nt, Red Gi	ne sun - Si of the coror (1 y shower - lary Cosmic (1 galaxies - (1 galaxies - (1 f Stars- Te of stars (1 galaxies - (1 galaxies - (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	na - Solar 10 Hours) effect of c radiation 10 Hours) Elliptical (9 Hours) mperature (9 Hours) giant-Core			
Text Book and 1. An Introduc	tory Course	e on Space S		l Earth's En	vironment	- S.S.Dega	onker,			

Gujarat University Publication, Ahmedabad

2. Atomic and Nuclear Physics-An Introduction- Subrahmanayam
3. An introduction to Astro Physics-Saraswathy K.N
Web references

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjnxvve_aXzAhXR6XMBHY_BBg4QFnoECAQQAw&url=https%
3A%2F%2Fen.wikipedia.org%2Fwiki%2FGalactic_astronomy&usg=AOvVaw3qaSu3ienq dmoAS9Bb5m_0

2. www.astronomynotes.com

Category	Cours Type	~ ~	Course Code	Cou	ırse Ti	itle	Con Ho		Credit (C)
Part – III	Core XXII Practic : III	I 2	3PHU21	Electronics- Practical III 48				8	2
Contact hou	rs per v	veek: 2							
Year		Sem	ester	Interna Marks		Extern: Marks		Tot	tal Marks
THIRD		V 8	& VΙ	40		60			100
Preamble: T experiments,									electronic
Course Outo	come: A	fter cor	npletion of	the course,	the lear	rners will b	e able	e to	
COs			Co	urse Statem	ent]	Knowledge Level
CO1		s using o		e constructio ctronic com				eir	K1
CO2				ciples of the e discrete ele					K2
CO3				circuits, cor discrete com	-	-	ress		K3
CO4		s using o		acters of con S, UJT, FET,			ic		K4
CO5 relate the difference between the use of various electronic circuits and analyze their waveform using CRO and AFO								K5	
K1 – Re	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate								
	CO-PC) MAP	PING (CO	URSE ART	TICUL	LATION M	IATR	IX)	
POs COs	I	201	PO2	PO3	PO4	4 PO	5	PO6	PO7

CO1	9	9	9	9	9	9	9				
CO2	9	9	9	9	9	9	9				
CO3	9	9	9	9	9	9	3				
CO4	CO4 9 9 9 9 3 3 3										
CO5	CO5 9 9 9 3 3 1										
Total Contribution of COs to POs	45	45	45	39	33	33	25				
Weighted Percentage of COs											
Contribution to POs	2.60	2.96	3.27	3.38	3.71	4.63	3.51				
	Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation;										
	9- High correlation between COs and Pos										
			JRSE CON								
		TWELVE	(12) EXPE	RIMENT	S ONLY						
1. Bistable Multi											
2. Astable Multiv		· ·,									
3. Series and Par											
4. Differentiating 5. Clipping and C	-	-	ts								
6. Logic Gates –											
7. Junction diode		-	otoristics								
8. IC – Regulated											
9. Dual Power Su	-	ppiy									
10. Square wave		using IC 55	5								
11. UJT Characte	-	ising re ee.									
12. Bridge rectifier with Voltage regulation											
13. Emitter follower											
14. Hartley Oscillator – Transistor											
15. Colpitt's Oscillator – Transistor											
-	16. Monostable Multivibrator										
17. FET characte	eristics										
18. RC Coupled	amplifier -	Transistor									

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: XXIII Practical : IV	23PHU22	Digital Electronics and Microprocessor - Practical IV	48	2

Contact hou	ırs pe	r week: 2						
Year		Sem	nester	Intern Mark		External Marks	Total	Marks
THIRD		V d	& VI	40		60	1	100
						al knowledge i		
electronics a programs and						xecution of mi	croproces	ssor
						ners will be abl	le to	
COs			Cou	rse Statem	ent			owledge Level
CO1			-	onents of m truth tables	-	essor and the		K1
CO2	outli					ary arithmetic		K2
CO3	prog	ram	-	-		flowchart and		K3
CO4	and I	Demorgan	's theorem	using gates		uilding blocks		K4
CO5		-		lip-flops, c omponents		verter, adder ar	nd	K5
K1 – Re	emem	ber; K2 –	Understar	nd; K3 – A	pply; K4	4 – Analyze; F	K5 – Eval	luate
	CO-	PO MAP	PING (CO	URSE AR'	TICULA	TION MATI	RIX)	
POs COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1		9	9	9	9	9	9	9
CO2		9	9	9	9	9	9	9
CO3		9	9	9	9	9	9	3
CO4		9	9	9	9	9	9	3
CO5		9	9	9	3	9	9	3
Total Contributio of COs to P		45	45	45	39	45	45	27
Weighted Percentage of COs 2.60 2.96 3.27 3.38 5.06 6.31 3.79 to POs 3.79								
					v correla	ntion; 3 – Med	lium cori	elation;
	ciuti		COU	RSE CON				
1 Varifiaati	on of '			(12) EXPE			and NAN	D
 verification NAND as 			-	es. OK, AN	D, NOT	, XOR, NOR,	anu inain	D
_, , , , , , , , , , , , , , , , , , ,								

- 3. NOR as universal building block
- 4. Verification of De Morgan's theorems
- 5. Boolean Algebra problem solving
- 6. Study of RS Flip-flop
- 7. Study of Shift Registers- Serial in Parallel out
- 8. Half Adder
- 9. Full Adder
- 10. Half Subtractor
- 11. Full Subtractor
- 12. Code converter (Binary to gray and vice versa)
- 13. 8085 ALP for 8 bit Addition and Subtraction
- 14. 8085 ALP for 8 bit Multiplication
- 15. 8085 ALP for 8 bit Division
- 16. 8085 ALP for finding the biggest number element in the array
- 17. 8085 ALP for Sum of the elements in the Array
- 18. 8085 ALP for One's Complement
- 19. 8085 ALP for Two's Complement Addition and Subtraction
- 20. 8085 ALP for Masking off most significant bits and setting bits

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – III	Core: XXIV Elective II	23PHU23A	Basic Concepts of C, C++	60	4

Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
THIRD	VI	25	75	100

Preamble: The aim is to provide the student gain knowledge on of basics of C and C++

Course Outcome: After completion of the course, the learners will be able to

COs	Course Statement	Knowledge Level
CO1	assemble basic knowledge about Programming in C, Conditional statements, different arrays, OOPs and Inheritance	K1
CO2	explain if statements, else if and break statements, OOPS and inheritance types	K2
CO3	examine these structures of C and C++ in programming various programs in mathematical and physics usage, arrays and OOPs values	К3
CO4	design the mathematically useful programs and apply in computer field	K4
CO5	estimate the programming in C and C++ and OOPs	K5

K1 – Rem	ember; K2	2 – Unders	tand; K3 –	Apply; K	4 – Analyze	e; K5 – Eva	aluate
(CO-PO MA	APPING (C	COURSE A	RTICULA	ATION MA	TRIX)	
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	3	3	3	3
CO2	9	9	9	3	3	3	3
CO3	9	9	9	3	3	3	3
CO4	9	9	9	3	3	3	3
CO5	9	9	9	1	1	3	1
Total Contributio n of COs to POs	45	45	45	13	13	15	13
Weighted Percentage of COs Contributio n to POs Level of corre 9- High correl				1.13 .ow correla	1.46 ntion; 3 – N	2.10 Iedium cor	1.83 relation;
COURSE CO	NTENT						
UNIT I - Over Introduction- types- Operato UNIT II - Cor If statement- statement- con UNIT III – An One dimensior UNIT IV – Pr Object Oriente C++-simple C-	Importance ors and Expr nditional St switch sta tinue staten rrays nal array- Tr inciples of od Programm	of C- Bas ression- Ma tatements ttement- g nent- break wo dimensi Object Or ning Parad	inaging Inp o to state statement ional array- iented Pro igms- basic	ut and Outp ment- whi Multidime gramming concept of	out Operator le statemen nsional arra	kens-Varial rs (1 nt- do sta (1 y (1	12 Hours)tement-for12 Hours)12 Hours)
 UNIT V –Inho Single inherita Text Books 1. Computing I (Unit 1,2 & 2. Object Orien Publication Reference Boo 	eritance nce-multile Fundamenta 3) nted Progra (Unit 4,5)	vel-multipl al & C Prog	e inheritano gramming -	ce-hierarchi E. Balagur	usamy, 201	1, Tata Mc	
 Programmin let us C - Ya 	ig in C - N.						n

Web reference

- 1. https://www.ikbooks.com/home/samplechapter?filename=280_9789385909306.pdf
- $2. \ https://fac.ksu.edu.sa/sites/default/files/ObjectOrientedProgramminginC4thEdition.pdf$
- 3. https://www.cs.cmu.edu/~mrmiller/15-110/Handouts/conditionals.pdf
- 4. https://www.google.com/search?q=inheritance+pdf+notes&ie=utf-8&oe=utf-8&client=firefox-b-ab

Category		urse ype	Course Code	Co	urse Title		Con Ho	tact urs	Credit (C)
Part – III	XX Ele	ore: XIV 2 ctive II	3PHU23B	Applied	Instrument	tation	6	0	4
Contact h	Contact hours per week: 5								
Year		SemesterInternalExternalMarksMarksT							tal Marks
THIRE)		VI	25		75			100
	-		good found interest for				-		e behavior of asurements
Course Ou	utcon	ne: After	completion	of the cours	se, the lear	ners will	be al	ole to	
COs			Co	ourse State	ment				Knowledge Level
CO1	recite the concepts of basic measuring temperature, pressure,							K1	
CO2	meas	suring ra	t the essen diations, os n x-ray spec	cilloscopes	0				K2
CO3			iple and fun suring devic					ers,	K3
CO4	sign	al display	need for pr devices and	d Compton	effect	C			K4
CO5	diffe radia	erent typ ation me	luate and t bes of ther easuring de nalyzing the	rmometers, vices, data	pressure conversi	measuri on and	ing a disp	and lay	K5
K1 – I	Reme	mber; K	2 – Unders	tand; K3 –	Apply; K	4 – Anal	lyze;	K5 – 1	Evaluate
	C	D-PO M	APPING (C	COURSE A	RTICUL	ATION 1	МАТ	RIX)	
POs COs		PO1	PO2	PO3	PO4	PO5		PO6	PO7
CO1		9	9	9	3	3		3	3
CO2		9	9	9	3	3		3	3

CO3	9	9	9	3	3	3	3
	9	9	9	3	3	3	3
CO4	9	9	9	3	3	3	3
CO5	9	9	9	1	1	3	1
Total Contributio n of COs to POs	45	45	45	13	13	15	13
Weighted Percentage of COs Contributio n to POs	2.60	2.96	3.27	1.13	1.46	2.10	1.83
Level of corre			,	ow correla	tion; 3 – N	ledium cor	relation;
9- High correl		een COs a	nd Pos				
COURSE CO	NTENT						
Introduction – measuring dev ideal gas therm liquid crystal the UNIT II – Pree Mechanical P Bridgeman Ga – Pirani therma UNIT III - The Introduction – and Transmitthe radiation – The UNIT IV- Date Introduction – Data conversion -Basic principal oscilloscope – UNIT V - X-ra X-ray – Coolid Spectrum – M Expression for Text Books	ices – Calil hometer -Th hermograph ssure Mea ressure Mea ressure me uge – Dead al Conducti hermal and Detection ing measur e Geiger Mu a Acquisit Signal cond on – Digital es – CRT f Simple CR ay Spectra lge tubes – losley's law change of v	bration - M hermisters - hy surement easurement weight tes ng gauge – Nuclear R of thermal ements – S aller counte ion and Co ditioning of to Analog features – H O- Display Properties - v (Statements)	easurement – Thermoel devices – ter – Low I The Knuds adiation M radiation M radiation – Solar radiat er onversion E the inputs converter – Basic princi devices: LI – X-ray Spent, Explanan 1	 of Temper etric effects Bourdon Pressure me en gauge Ieasuremen Measuremen Measuremen Measuremen Measuremen Des of sign ED – LCD ectra – Contition and Ir 	ature: Tem s – quartz c tube Pre asurement nts nent of emi rements – 1 annel data Digital con nal displays tinuous and nportance)	perature sca crystal therr (1 ssure gaug – The Mc l (1 ssivity – R Detection c (1 acquisition nverter -Os – Block D (1 characteris – Comptor	ales – The nometer – 2 Hours) ge – The ead gauge 2 Hours) eflectivity of Nuclear 2 Hours) systems – cilloscope Diagram of 2 Hours) tics X-ray n Effect –
 Instrumentation Devices and Systems –C S Rangan, G R Sharma, V S V Mani TMH (Unit 1&4) Experimental methods for Experiments - Jack P Holman (Unit 1, 2&3) Electronic Instrumentation - H S Kalsi, TMH (Unit 4) Modern Physics - R Murugesan, S. Chand & Company Limited (Unit 5) Web References 							

1. https://nptel.ac.in/courses/108/105/108105064/

Category	Course Type	Course Code	Cou	rse Title		Con Ho	tact urs	Credit (C)		
Part – III	Core: XXIV Elective II	23PHU23C	Smart Materials 60			0	4			
Contact hours per week: 5										
Year	ar Semester Internal External Marks Marks							otal Marks		
THIRD)	VI	25		75			100		
Preamble: in smart ma		eper knowledg	e of smart m	aterials, s	ensors,	actuat	ors &t	the advances		
Course Ou	itcome: Af	ter completion	of the course	e, the lear	ners will	l be al	ole to			
COs	COs Course Statement							Knowledge Level		
CO1	assemble actuators,		K1							
CO2	CO2 explain polycrystalline systems, Piezoelectric strain sensors, the knowledge about low strain smart sensors - Matteuci Effect and Nagoka-Honda Effect									
CO3		lagneto strictiv Laminated Plate		n, Comp	osites b	ased	on	K3		
CO4	Classical I	out the comp aminated Plate	e Theory					K4		
CO5		ntelligent Systemes in smart stru	-	Wiedema	nn Effe	ct ab	out	K5		
K1 – I	Remember	; K2 – Unders	tand; K3 – A	Apply; K	4 – Ana	lyze;	K5 – 1	Evaluate		
	СО-РО	MAPPING (O	COURSE AI	RTICULA	ATION	МАТ	RIX)			
POs Cos	POI	PO2	PO3	PO4	POS	5	PO6	PO7		
C01	9	9	9	3	3		3	3		
CO2	9	9	9	3	3		3 3			
CO3	9	9	9	3	3		3	3		
CO4	9	9	9	3	3		3	3		

CO5	9	9	9	1	1	3	1
Total Contributio n of COs to POs	45	45	45	13	13	15	13
Weighted Percentage of COs Contributio n to POs	2.60	2.96	3.27	1.13	1.46	2.10	1.83

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

COURSE CONTENT

UNIT I - Overview of Smart Material

Introduction to Smart Materials - Principles of Piezoelectricty - Perovskyte Piezoceramic Materials - Single Crystals vs Polycrystalline Systems - Piezoelectric Polymers - Principles of Magnetostriction - Rare earth Magnetostrictive materials - Giant Magnetostriction and Magneto-resistance Effect

UNIT II - High-Band Width, Low Strain Smart Sensors

Piezeoelctric Strain Sensors - In-plane and Out-of Plane Sensing - Shear Sensing-Accelerometers - Effect of Electrode Pattern - Active Fibre Sensing - Magnetostrictive Sensing - Villari Effect - Matteuci Effect and Nagoka-Honda Effect - Magnetic Delay Line Sensing -Application of Smart Sensors for Structural Health Monitoring (SHM) - System Identification using Smart Sensors

UNIT III - Smart Actuators

Modelling Piezoelectric Actuators - Amplified Piezo Actuation - Internal and External Amplifications - Magnetostrictive Actuation - Joule Effect - Wiedemann Effect -Magnetovolume Effect -Magnetostrictive Mini Actuators - IPMC and Polymeric Actuators - Shape Memory Actuators - Active Vibration Control - Active Shape Control - Passive Vibration Control - Hybrid Vibration Control

UNIT IV - Smart Composites

Review of Composite Materials - Micro and Macro-mechanics - Modelling Laminated Composites based on Classical Laminated Plate Theory - Effect of Shear Deformation -Dynamics of Smart Composite Beam - Governing Equation of Motion - and Finite Element Modelling of Smart Composite Beams

UNIT V - Advances In Smart Structures & Materials

Self-Sensing Piezoelectric Transducers - Energy Harvesting Materials - Autophagous Materials - Self- Healing Polymers - Intelligent System Design - Emergent System Design

Text Book and Reference Books

1. Smart Structures and Materials - Brian Culshaw, Artech House, 2000

2. Smart Structures - Gauenzi.P Wiley, 2009

3. Piezoelectricity – Cady W. G, Dover Publication

Web references

1. https://www.iberdrola.com/innovation/smart-materials-applications-examples

2. www.smartmaterials.com

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
Part – IV	Skill Enhance ment Course: III	21SEPHU0 3	Programming in C, C++ - Practical	36	2

Contact hours per week: 3

Year	Semester	Internal Marks	External Marks	Total Marks	
THIRD	V	50		50	

Preamble: The aim of the course is to develop the skill to gain knowledge in programming in C and C++

Course Outcome: After completion of the course, the learners will be able to

Cos	Course Statement	Knowledge Level
CO1	acquire basic knowledge about Programming in C and C++, and Recall program coding	K1
CO2	perform the Arithmetic Operation through C &C ++ Programs and like addition subtraction division both in integers and matrix type using Do-While loop	K2
CO3	compare two files, Characters and Strings using C++ and Check whether they are identical or Different. And perform mathematical function	K3
CO4	calculate Matrix addition and matrix Inverse functional program	K4
CO5	converting Number to Words and Day name using C &C++ Program	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

C	CO-PO MAPPING (COURSE ARTICULATION MATRIX)									
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7			
CO1	9	9	9	3	3	3	3			
CO2	9	3	3	3	3	3	3			
CO3	9	3	3	3	3	3	3			
CO4	9	3	3	3	3	3	3			
CO5	9	3	3	1	1	1	0			
Total Contribution of COs to	45	21	21	13	13	13	12			

POs							
Weighted							
Percentage							
of COs							
Contribution	2.60	1.38	1.52	1.13	1.46	1.82	1.69
to POs	2.00	1.30	1.32	1.15	1.40	1.02	1.09

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

COURSE CONTENT ANY TWELVE (12) EXPERIMENTS ONLY

Programming in C

- 1. Find the number of days elapsed between two dates
- 2. Convert Integer in the range 1 to 100 in words
- 3. Write a program that uses functions to compare two strings input by user. The Program should state whether the first string is less than, equal or greater than the second string
- 4. Write a Program to compare two files printing the character position where they equal and where they are different
- 5. Write a Program for Matrix Addition
- 6. Write a Program for Matrix Multiplication
- 7. Write a Program for Addition of Two times

Programming in C++ (Any three (3) Programs only)

- 1. To read any two number through the key board and to perform simple Arithmetic Operation (Use Do While Loop)
- 2. To display the name of the day in a week, depending upon the number entered through the Keyboard using Switch Case statement
- 3. To read the elements of the given two matrix of $m \times n$ and to perform the Matrix Addition
- 4. Write a Program to find the Inverse of given $m \times n$ matrix
- 5. Write a Program to compare two files printing the character position where they are equal and where they are different

(i) <u>Value-added Courses:</u>

Categ ory	Course Type	Course Code	Course T	itle	Contact Hours	Credit (C)
	Value-added Course - I		CRYSTAL PH	IYSICS		
Contact	hours per weel	k:				
Year	r Se	mester	Internal Marks	Externa Marks		otal Marks
FIRS'	T I	& II				
Preamble	e: The aim is to	acquire kno	wledge about soli	ds materials	and their b	onds
Course C	Dutcome: After	completion	of the course, the	learners wil	l be able to	
COs		C	ourse Outcome			Knowledge Level
CO1	understand th	ne basics of c	crystal structure			K1, K2
CO2	understand th	ne concepts of	of crystal defects			K1, K2
CO3	study the diff	ferent types of	of bonding in solid	ls		K1, K2
CO4	analyze the b	and gap in d	ifferent materials			K1, K2
COURSI	E CONTENT					
Distinction Lattice – UNIT II Classifica – Screw of UNIT III Type of E UNIT IV Classifica Insulators Text Boo 1. Modern 2. Concep Referenc 1. Solid S Meerut	Basis –Crystal - Crystal Defend ation of Crystal dislocation I - Bonding in S Bonds in Crysta - Band Theory ation of solids by - Conductivity - Solids - R Mo - Conductivity - Conductivity - Solids - R Mo - Conductivity - Solids - R Mo - Conductivity - Solids - R Mo - Conductivity - Conductivity	stalline and Structure – U cts imperfection Solids ls – Ionic – O y of Solids based on the of Semicono Iurugesan, 20 Physics – Art Gupta and K	Amorphous –Diff Jnit cell – Primitiv ns –Schottky Defe Covalent – Metalli basis of Band the ductors D18, S. Chand & C hur Beiser, Sixth I umar, 9 th Revised J.P. Srivastava, 2 ⁿ	ve lattice – S ct - Frenkel c – Molecul eory: Condu Co Edition, 201 Edition, 20	Seven crysta defect –Ed ar - Hydrog ctors – Ser 3, McGraw 16, K. Nath	ll system ge dislocation gen bonding niconductors– Hill & Co,

Cotogom	Course	Course	Course Title	Contact	Credit (C)
Category	Туре	Code	Course The	Hours	Creant (C)

	Value added Course - II		PROFESSIO ENGLISH PHYSICAL SO	FOR		
Contact ho	ours per wo	eek:				
Year	:	Semester	Internal Marks	Externa Marks	1	Total Marks
		III & IV				
 To commendation To form regination To form regination	apetence of focus on de sters. develop stru- sharpen stu are of the ta tcome: oletion of t language f lerstand the ting simple	the lexical, first year phy eveloping stud ategic competed dents' critical rget situation. he course, the r own ability to for speaking whe importance of unfamiliant e importance of e sentences with	grammatical, so sical sciences stude ents' language skill ence that will help thinking skills and e learners will be to improve their co with confidence in a se of reading for texts of writing in acader shout committing e es in UGC LOCF -	ents. Ils and know in efficient c make studer able to mpetence in n intelligible or life Ind nic life	ledge of communants cultu using the e and acco lepender	Edomain specific ication. rally e language ceptable manner nt reading and
COURSE	CONTEN	Г				
UNIT I - C						
		ing to instruct	ions			
	e	0	and official phone			
conve	rsations					
	•		sages, one from ea			
•		•	cs/Computer Scien	·		
	ng: Letters mar in Cor		professional conte	λl		
J. Ofain		Wh and Yes/I	No questions			
	•	Question tags	-			
	•	Imperatives				
6. Vocal	bulary: Wo	rd formation				
	•	yms using Pre	efixes			
	-	refixes (E.g ir				
iii) Ch	anging wo	rds using suffi	xes			

A. Noun Endings

B. Adjective Endings

C. Verb Endings

UNIT II - DESCRIPTION

Listening: Listening to process description

Speaking: Role play formal:

- With faculty and mentors in academic environment
- Workplace communication Informal:
- With peers in academic environment
- Workplace communication

Reading: Reading passages on products, equipment and gadgets

Writing: Writing sentence definitions (e.g. computer) and extended definitions (e.g. artificial intelligence)

Picture Description – Description of Natural Phenomena (100 words) Grammar in Context: Connectives and linkers.

Vocabulary: Synonyms (register) - Compare & contrast expressions

UNIT III - NEGOTIATION STRATEGIES

Listening: Listening to interviews of specialists / inventors in the field (Subject specific) Speaking: Brainstorming (mind mapping). Small group discussions (subject specific) Peading: Longer Peading text. (Comprehensive passages)

Reading: Longer Reading text. (Comprehensive passages)

Writing: Essay Writing (250 word essay on topics related to subject area, like pollution, use of pesticides in cultivation, merits and demerits of devices like mobile phones, merits and demerits of technology in development)

Grammar in Context:

- Active voice & Passive voice
- If conditional Vocabulary:
- Collocations
- Phrasal verbs

UNIT IV - PRESENTATION SKILLS

Listening: Listening to presentations, listening to lectures, watching ocumentaries (discovery / history channel videos with subtitles)

Speaking: Short speech. Making formal presentations (PPT)

Reading: Reading a written speech by eminent personalities in the relevant field /short poems / short biography.

Writing: Writing Recommendations Interpreting visuals - charts / tables/flow diagrams Grammar in Context: Modals

Vocabulary: Single word substitution (register)

UNIT V - CRITICAL THINKING SKILLS

Listening: Listening to advertisements/news and brief documentary films (with subtitles) Speaking: Problem-Solution Speeches (Brief speeches). E.g. Should the use of public transport be promoted to curb pollution?

Reading: Motivational stories on Professional Competence, Professional Ethics and Life Skills (subject-specific)

Writing: Studying problems and finding solutions (Essay in 200 words) Grammar: Framing simple sentences Vocabulary: Fixed expressions SUGGESTED ACTIVITIES UNIT 1 Listening: Links for formal conversation can be given - Gap filling exercises - Multiple Choice questions – Making notes. Speaking: Role play activity Reading: Note making. Note-Taking. Writing: Guided Writing (developing hints) **Email Writing** Grammar&Vocabulary: Worksheets – Games. **UNIT II** Listening: Process Descriptions (Processes of condensation and evaporation./Process of measuring the thickness of a wire using a screw-gauge./process of exaction of sugar from sugarcane) Speaking: Role Play Reading: Multiple choice questions - Evaluative answers - Classifying and labeling Writing: Picture description – Description of natural phenomena (rainbow, earthquake, volcanic eruption, erosion, natural disasters in 100 words). Grammar: Activities, Worksheets & Games Vocabulary: Expansion of compound nouns **UNIT III** Listening: Gap filling exercises – Listening comprehension **Speaking:** Debates Reading: Reading comprehension Writing: Essay Writing Grammar &Vocabulary: Activities, Worksheets & Games. **UNIT IV** Listening: Note taking (of listening & viewing items) - Filling a table based on the listening item. Speaking: JAM, Presentations. (PPT-TECHNICAL) Reading: Reading comprehension Writing: Difference between recommendations and instructions Questions/MCQs based on graphs/flow diagrams/charts Grammar &Vocabulary: Activities, Worksheets & Games. UNIT V Listening: Radio News/ TV News telecast Speaking: Watch or listen to documentaries and ask questions Reading: Reading motivational stories (success stories in subject area) Writing: Essay writing. Grammar & Vocabulary: Activities, Worksheets & Games

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
	Value		Problem Solving in		
	added		Physics for Competitive		

	Course III	2 -	exams					
Contact hours per week:								
Year		Semester	Internal Marks	Externa Marks		Cotal Marks		
		-	student, knowledg and to develop the	-		•		
	-		of the course, the	•	•	•		
COs		C	ourse Outcome			Knowledge Level		
CO1	underst	and and solve pro	blems on one dime	ensional mo	tion	K ₁ , K ₂ , K ₃		
CO2		and and solve pro ional motion	blems based on ve	ectors and tw	VO-	K_{1}, K_{2}, K_{3}		
CO3	underst	and and solve pro	blems on the laws	of motion.		K ₁ , K ₂ , K ₃		
CO4	underst	and and solve pro	blems on the elect	ric fields		$K_{1,} K_{2,} K_{3}$		
CO5	underst circuits	-	blems on the elect	ric current a	ind	K_{1}, K_{2}, K_{3}		
K1 – Ren	ember;	K2 – Underst	and; K3 – App	oly;				
COURSE	CONTR	ENT						
Motion in Speed – Falling Ot UNIT II Vectors:C Componen Motion in Dimension Motion (E	 UNIT I Motion in One Dimension: Displacement, Velocity, and Speed - Instantaneous Velocity and Speed - Acceleration - One-Dimensional Motion withConstant Acceleration - Freely Falling Objects (Example Problems only) UNIT II Vectors:Coordinate Systems -Vector and Scalar Quantities - Some Properties of Vectors - Components of a Vector and UnitVectors Motion in Two Dimensions: The Displacement, Velocity, and Acceleration Vectors - Two-Dimensional Motion withConstant Acceleration - Projectile Motion - Uniform Circular 							

Text Books

1. Fundamentals of Physics by David Halliday, Robert Resnick, Jearl Walker, 10th Edition, ISBN: 978-1-118-23072-5, 2013, John Wiley & Sons Inc.,.

ii) Extra Credit Course(s):

Courses offered by the department for ADVANCED LEARNERS

Category	Course Type	Course Code	Course T	ïtle	Con Ho	tact urs	Credit (C)
			DIGITAL LITERACY				
Contact h	ours per wo	eek:					
Year	5	Semester	Internal Marks	Externa Marks		Τα	otal Marks
		I – VI oing the Digita er & its usage	l Literacy Course,	one should	be ab	le to a	cquire basic
Course Ou	utcome: Af	ter completion	of the course, the	learners wil	l be al	ole to	
COs		C	ourse Outcome				Knowledge Level
CO1	recall the b	basic operation	s of a computer				K1
CO2		he concepts of e-Governance S	f Online Banking Services	and unders	stand	the	K2
CO3	-	r a web-based attachments	e-mail account a	nd using it,	Open	ing	K3
CO4	access the	Internet and fin	nding information	of interest			K4
CO5	create, edi	t and format do	ocuments using a v	vord process	sor		K5
K1 – I	Remember	; K2 – Unders	tand; K3 – Apply	; K4 – Ana	alyze;	K5 – 1	Evaluate
Unit		С	Course Content]	Instructional Hours
Ι	Operating a Computer System Introduction - Operating System and its usage - Basic Operations: Mouse (click, click and drag, double click, right click (for the context menu)), Keyboard (some of the more common letters, enter, Delete, backspace, shift, tab and arrows) - Starting and Shutting Down a Computer - User Interface for Desktop and Laptop - Task Bar - Icons & Shortcuts - Running an Application - Scroll Bars - Using Help - File and Folder Management - Types of File Extensions						-
П	Create, E Introduction Processing Sidebar - Document	dit and Forma on - Word P g Package - Creating a Ne ss - Opening	at documents using processing Basics Title Bar, Men ew Document - C Documents - Sa sing The Help -	- Openir u Bar, Too Opening and ove and Sa	ng We olbars Clos: ve As	ord & ing s -	-

	Preview - Printing of Documents - PDF file and Saving a Document as PDF file - Document manipulation & Formatting	
	- Text Selection - Cut, Copy and Paste - Font, Color, Style and Size selection - Alignment of Text - Undo & Redo - Spelling & Grammar - Shortcut Keys	
	Introduction to Internet and finding information on	
III	Internet Introduction - Internet - Concept of Internet & WWW - Website Address and URL - Applications of Internet - Modes of Connecting Internet (Hotspot, Wi-Fi, LAN Cable, Broadband, USB Tethering) - Popular Web Browsers (Internet Explorer/Edge, Chrome, Mozilla Firefox) - Exploring the Internet - Surfing the web - Popular Search Engines - Searching on Internet	-
	Working with e-mail	
IV	Introduction - Structure of E-mail - Using E-mails - Opening Email account - Mailbox: Inbox and Outbox - Creating and Sending a new E-mail - Replying to an E-mail message - Forwarding an E-mail message - Access email with attachments - Delete an e-mail	-
	Understanding Financial Literacy and e-Governance	
V	Services Introduction - Digital Financial Tools - Understanding OTP [One Time Password]and QR [Quick Response] Code - UPI [Unified Payment Interface] - AEPS [Aadhaar Enabled Payment System] - USSD[Unstructured Supplementary Service Data] - Card [Credit / Debit] - eWallet- PoS [Point of Sale] - Internet Banking - National Electronic Fund Transfer (NEFT) - Real Time Gross Settlement (RTGS) - Immediate Payment Service (IMPS) - Online Bill Payment - Overview of e-Governance Services like Railway Reservation, Passport, eHospital [ORS] - Accessing e-Governance Services on Mobile Using "UMANG APP"	-
Test Book		
	omputer Course – Prof. Satish Jain, Geetha, 2017, BPB Publication	ns (Unit 1-5)

Category	Course Type	Course Code	Course Title		Contac Hours	Credit ((`)			
			PYTHON						
			PROGRAM	IMING					
Contact he	Contact hours per week:								
Year		Semester	Internal Marks	External Marks		Total Marks			
		I - VI							
Preamble: The aim is to make the students to understand the concepts of Python Programming									
Course Ou	Course Outcome: After completion of the course, the learners will be able to								

COs	Course Outcome	Knowledge Level
CO1	recite the Variables, Reserved Words and Basic Syntax of python programming list out Standard Data Types and operators in python programming recall control statements, expressions and the definition of functions in python programming	K1
CO2	explain the variables, commands and data types in python programming summarize the operators, control statements, expressions and functions in python programming interpret single input and output in python programming	K2
CO3	editPythonFiles compare and apply different types of data types, operators, control statements and expressions in python programming apply the appropriate operations expressions to loop the program	K3
CO4	executePythonfromthecommandLine analyze the control statements relate built-in functions of python programming	K4
CO5	criticize Passing parameters to a Function choose the particular type of operators and data types for different applications of python programming	K5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

Unit	Course Content	Instructional Hours
I	Basics Python-Variables-ExecutingPythonfromtheCommandLine- EditingPythonFiles- Python Reserved Words - Basic Syntax- Comments	
II	Standard Data Types – Relational Operators - Logical Operators - Bit Wise Operators - Simple Input and Output.	
Ш	Control Statements Control Flow and Syntax - Indenting - if Statement - statements and expressions	
IV	String operations- Boolean Expressions -while Loop - break and continue - for Loop	
V	Functions Definition - Passing parameters to a Function - Built-in functions- Variable Number of Arguments	
Text Boo 1. Mark S	oks Summerfield - Programming in Python 3: A Complete introduction	to the Python

Language, Addison-Wesley Professional, 2009

2. Martin C. Brown - PYTHON: The Complete Referencel, McGraw-Hill, 2001

Category	Course Type	Course Code	Course Title	Contact Hours	Credit (C)
			ACOUSTICS		

Contact l	ours per week:			
Year	Semester	Internal Marks	External Marks	Total Marks
	I – VI			
	: The aim is to make the s			•
	tal explanation and to lease			
Course O	utcome: After completion	n of the course, the	learners will be al	ble to
COs	(Course Outcome		Knowledge Level
CO1	know the basic concepts	s, principles of Aco	oustics.	K1
CO2	verify the methods to pr	oduce different typ	bes of sounds.	K2
CO3	identify the techniques f	for particular applic	cation.	К3
CO4	appreciate Magnetostric	tion method and its	s applications.	K4
CO5	realize the practical applied	lications in differer	nt fields of sound	K5
K1 –	Remember; K2 – Under	rstand; K3 – Apply	y; K4 – Analyze;	K5 – Evaluate
Unit		Course Content		Instructional Hours
Ι	Waves and Oscillation Simple Harmonic Moti Vibrations – forced v series- intensity of sour Decibel and Bel	rier -		
П	Ultrasonics Introduction – Piezo el waves –Piezoelectric cr waves-Magnetostrictior –properties of ultrasonio	nic ves		
Ш	Acoustics of Buildings Reverberation –deriv reverberation time- al Buildings –afactors a Sound distribution in ar	for of -		
IV	Reflection, Refraction Reflection of s plane surface, experin sound-Refraction of a Experimental Demonstr of sound- Explanation of	of e –		
V	Practical Applications Siven- falling plate m loud speaker- tape reco direction of aircraft – w bullet	ethod –Gramopho ording – sound ra	gging – locating	the

Text Books

1. Properties of matter and Acoustics – R. Murugeshan, KiruthigaSivaprasath, S. Chand company Pvt Ltd. (Unit 1,2,3)

2. A text book of sound – N. Subrahmanyam Brijlal Second revised edition – Vikas publishing house pvt ltd.,

	C	Comme			Cartat		
Category	Course Type	Course Code	Course Title Contac Hours		Hours	Credit (C)	
	Type	Coue	THEORY	OF	liouis		
			RELATIV				
Contact hours per week:							
Year		Semester	Internal Marks	Externa Marks	· ,	Total Marks	
		I - VI					
	and to learn	-	students to develo out their transform			-	
Course O	utcome: Af	ter completion	of the course, the	learners wil	l be able to)	
COs	Course Outcome				Knowledge Level		
CO1	know the various basic theories of relativity					K1	
CO2	recognize the importance of Ether hypothesis, variations of Mars with velocities					K2	
CO3	interpret Michelson Morley Experiments mars energy equivalence					K3	
CO4	categorize contraction	K4					
CO5	communicate simple concepts in relativity, gravitational Red shift					K5	
K1 – 2	Remember	; K2 – Unders	tand; K3 – Apply	v; K4 – Ana	lyze; K5 -	– Evaluate	
Unit	Course Content		Instructional Hours				
I	Basics of Relativity Introduction – Frame of Reference – Newtonian Principle of Relativity – Galilean transformation Equations						
П	General Relativity Galilean transformation Equations – The Ether hypothesis- The Michelson Morley Experiment- Predictions of General Relativity- Photons and Gravity						
III	Special T Special T Equations						

IV	Mars and Velocities Time Dilation – Relativity of simultaneity – addition of velocities – variation of mars with velocity - Gravitational Red shift				
v	Energy Equivalence Mars Energy Equivalence – Minkowski's four-Dimensional space – Time continuum – The General Theory of Relativity				
Text Book 1. Modern Physics, R. Murugeshan (2013), S.Chand and Company pvt.Ltd (Unit 1-5)					