PG PROGRAMME STRUCTURE

CBCS: 2023 – 2024

Category	Components	No. of Courses	Credit(s) / Course	Total Credits	Proposed Semester
	Core Courses: A) Core and Elective Courses: (Theory/Practical)	23	1/2/3/4		
	Core : Theory	13	4/3	79	
	Core : Practical	4	4		
	Core : Elective (CBCS)	3	3		
	Core : Open Elective(CBCS)	1	2		I – IV
Part - III	Core : Industrial/ Institution Training	1	1		$\mathbf{I} = \mathbf{I} \mathbf{v}$
	B) Projects: Core – Major Project and Viva voce	1	2/3	3	
Part – IV	A) Ability Enhancement :i) Cyber Security	1	2	2	II
	A) Proficiency Enhancement Course: (Self Study)	1	2	2	III
Part – V	 A) Competency Enhancement Courses: i) Online Course / Learning Object Repository 	1	2	4	I – IV
	ii) Certificate Course	1	2		

*Credit Transfer for all courses from UGC SWAYAM MOOC Courses.

Total: 2500 Marks 90 credits

P.K.R ARTS COLLEGE FOR WOMEN(Autonomous) GOBICHETTIPALAYAM – 638476. MASTER OF SCIENCE Course Scheme and Scheme of Examinations (For students admitted from 2023-24& onwards)

Category	Compone	Course	Course Title	Contact Hrs/ week	Exam Duration	Μ	lax.Ma	rks	Credits
Cat	nt	Code			Ex Dur	CIA	ESE	Total	Cr
III	Core: I	23PHP01	Classical Mechanics	5	3	25	75	100	4
III	Core :II	23PHP02	Mathematical Physics	5	3	25	75	100	4
III	Core : III	23PHP03	Quantum Mechanics – I	5	3	25	75	100	4
III	Core : IV	23PHP04	Numerical Methods & MATLAB Programming	5	3	25	75	100	4
III	****	****	Advanced Physics Practical-I	3	-	-	-	-	-
III	****	****	General Electronics Practical-I	3	-	-	-	-	-
III	Core : V Elective: I	23PHP05A /23PHP05B / 23PHP05C	Essentials of Nanoscience/ Radiation Physics/ Programming in Python	4	3	25	75	100	3
			TOTAL	30				500	19
			SEMESTER – II						
III	Core : VI	23PHP(Quantum Mechanics – II	5	3	25	75	100	4
III	Core : VII	23PHP0	Advanced Electronics	5	3	25	75	100	4
III	Core : VII	I 23PHP(¹⁸ Introduction to Scientific Research & Solar Energy Research		3	25	75	100	3

III	Core : IX	23PHP09	Advanced Physics Practical- I	5	3	40	60	100	4
III	Core : X	23PHP10	General Electronics Practical-I	5	3	40	60	100	4
III	Core : XI Elective: II	23PHP11A/ 23PHP11B/ 23PHP11C	Astronomy &Astrophysics / Experimental Techniques/ Fundamentals of Data Sciences	3	3	25	75	100	3
IV	Ability Enhancement	23AEP01	Cyber Security	2	3	100		100	2
			TOTAL	30				700	24
			SEMESTER – III						
III	Core : XII	23PHP12	Atomic and Molecular Spectroscopy	5	3	25	75	100	4
III	Core :XIII	23PHP13	Nuclear & Particle Physics	5	3	25 7		100	4
III	Core :XIV	23PHP14	Electromagnetic Field Theory	5	3	25	75	100	4
III	Core : XV	23PHP15	Institutional Training	-	-	100	-	100	1
III	****	****	Advanced Physics Practical- II	4	-	-	-	-	-
III	****	****	General Electronics Practical-II	4	-	-	-	-	-
III	Core : XVI (Open Elective)	****	Opted by the students / offered by other Departments	3	3	25	75	100	2
III	Core : XVII Elective : III	23PHP16 A /23PHP16 B/23PHP1 6C	Biomedical2575Instrumentation/Thin Film434Physics and CrystalGrowth/ Cloud computing434		100	3			
v	Proficiency Enhancement	23PEP01	Laser and its applications (Self –Study)	-	3	-	100	100	2

			TOTAL	30				700	20
SEMESTER – IV									
III	Core :XVIII	23PHP17	Condensed Matter Physics	6	3	25	75	100	4
III	Core : XIX	23PHP18	Thermodynamics and Statistical Mechanics	6	3	25	75	100	4
III	Core : XX	23PHP19	Electronic Communication Systems	6	3	25	75	100	4
III	Core : XXI	23PHP20	Advanced Physics Practical- II	5	6	40	60	100	4
III	Core : XXII	23PHP21	General Electronics Practical-II	5	6	40	60	100	4
III	Core :XXIII	23PHP22	Project Work & Viva Voce	2	3	20	80	100	3
			TOTAL	30				600	23
V Competency Competency SEMESTER I – IV V Description Learning Object Repository (LOR)							7	2	
, ,	Enhancement		Certificate Course	SEMESTER 1 - IV 2			2		
	II			Tota	al Mar	·ks & C	Credits	- 2500	90

Credit Transfer for all courses from UGC SWAYAM MOOC Courses.

Total Marks: 2500 Total credits: 90

Chair Person Name, designation

College name – full address

SYLLABUS (For students admitted from 2023-24 & onwards) Semester – I

Category	Course Type	Course Code	Cou	ırse Title		Con Ho		Credit			
Part – III	Core: I	23PHP01		ASSICAI CHANIC		6	0	4			
Contact ho	ours per w	eek: 5									
Year		Semester	Interna Marks		Externa Marks			Total Marks			
First		Ι	25		75			100			
concepts in	Preamble: The aim is to provide the students, the knowledge and understanding of the fundamental concepts in the dynamics of system of particles, motion of rigid body, Lagrangian and Hamiltonian formulation of mechanics										
CO Staten	CO Statement: On the successful completion of the course, students will be able to										
COs		(Knowledge Level						
CO1	recall important terms such as Constraints, Degree of Freedom, Phase Space, angular Momentum and Poissons bracket K1										
CO2	CO2illustrate D'Alembert's principle, Hamilton's Canonical Equation of Motion, Poisson Brackets, Principle of Least Action, Equivalent One body problem, Euler's theorem, Euler's angles, Kepler's Problem - Shapes of orbitsK2										
CO3	Harmonic	range's and Ha Oscillator, Sin d in Harmonic (ple Pendulu				ar	K3			
CO4	Equilibriu	ertial/Non iner m, The motion r, Equation of n	of a Symme	etric Top u	under the	e actio	n	K4			
CO5	evaluate t Transform	he Hamilton's V nations, Genera Axis of Transfo	Variational p ting Function	orinciple, (n and diff	Canonic erent for	al :ms,		K5			
CO6	Formulate	Effects of Cor	iolis force or	n moving	bodies.			K6			
K1–Reme	ember; K2	– Understand	; K3–Apply	; K4 –An	alyze; H	K5–Ev	aluat	e; K6 –Create			
	CO)-PO MAPPIN	NG (COURS	SE ARTI	CULAI	TION	MAT	RIX)			
PO COs	РО	1 PO 2	PO 3	PO 4	РО	5	PO 6	5 PO 7			
C01	9	9	9	9	9		3	1			
CO2	9	9	9	9	9		3	1			

CO3	9	9	9	3	3	3	1
CO4	9	9	9	3	3	3	1
CO5	9	9	3	1	3	1	1
CO6	9	3	3	1	1	1	1
Total Contributio n of COs to POs	54	48	42	26	28	14	6
Weighted Percentage of COs Contributio n to POs	6.37	6.38	7.22	5.32	6.43	3.70	2.29

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

LAGRANGIAN FORMULATION UNIT-I:

(12 Hours) Constraints and Degrees of Freedom-Generalized Coordinates: Generalized Displacement, Velocity, Acceleration, Momentum, force & Potential-Variational technique and Euler Lagrange Differential equation-Hamilton's Variational principle-Lagrange's equation of motion from Hamilton's principle-D'Alembert's principle-Application of Lagrange's equation of motion: Linear Harmonic Oscillator-Simple Pendulum-Isotropic Oscillator.

UNIT - II : HAMILTONIAN FORMULATION

Phase space - Hamiltonian - Hamilton's Canonical Equation of Motion - Physical Significance of H -Deduction of Canonical Equation from Variation principle - Application of Hamilton's equation of motion: Simple Pendulum, Linear Harmonic Oscillator, and Isotropic Oscillator - Principle of Least Action and Proof - Canonical Transformations - Generating Function and different forms.

UNIT- III: HAMILTON – JACOBI METHOD

Hamilton Jacobi Method- Solution of Harmonic Oscillator Problem by HJ method-Particle falling freely-Damped Harmonic Oscillator-Poisson Brackets-Definition-Equation of motion in Poisson Bracket form-Jacobi - Poisson Theorem-Angular Momentum and Poisson's Bracket.

UNIT- IV: TWO BODY PROBLEMS

Equivalent One body problem-General Features of central force motion-Stability of orbits and Conditions for closure- Kepler's Problem - Shapes of orbits-Inertial/Non inertial frames-Rotating Coordinate system-Effects of Coriolis force on moving bodies.

UNIT-V: RIGID BODY DYNAMICS

Euler's theorem-Euler's angles-Angular velocity of a rigid body-Angular momentum of Rigid Body-Moments and Products of Inertia-Principle Axis of Transformation-Torque Free Motion of a Rigid Body-Poinsot Solutions-The motion of a Symmetric Top under the action of Gravity-Stable and Unstable Equilibrium.

(12 Hours)

(12 Hours)

(12 Hours)

Text Books:

1. Classical Mechanics, S.L.Gupta, V. Kumar & H. V. Sharma, 2015, PragatiPrakashan, Meerut. (All units)

References Books:

1. Classical Mechanics, H. Goldstein, Charles P. Poole, John Safko, 2011, Pearson, India. Web Reference:

1.https://sites.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf

2.https://www.physics.rutgers.edu/~shapiro/507/book.pdf

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core: II	23PHP02	MATHEMATICAL	60	1
r att – 111	Cole. II	23F11F02	PHYSICS	00	4

Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks	
First	Ι	25	75	100	

Preamble: The aim is to provide the students firm foundation in various mathematical methods developed and used for understanding different Physics phenomena.

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level						
CO1	identify the basic definitions of differential Equations, Polynomials, Functions, Complex Variable and Groups	K1						
CO2	summarize the Legendre's Polynomials and Functions, Orthogonality, Functions of a Complex Variable, Vector Space, Basis, Inner Product, Fourier Series, Laplace Transform, Multiplication table, Subgroups, cosets and classes, Schur's lemma, rotation groups	К2						
CO3	perform the Special function and complex variables in various theorems and relations	К3						
CO4	classify the functions and variables, vector space and groups	K4						
CO5	relate the Legendre Polynomial and their derivatives	K5						
CO6	Make Fourier Series and Laplace Transform for different problems and create character table of C2v and C3v by using groups	K6						
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create CO- PO MAPPING (COURSE ARTICULATION MATRIX)								
PO-CO	PO CQsPO 1PO 2PO 3PO 4PO 5PO 6PO 7							

C01	9	9	9	3	3	3	1
CO2	9	9	9	3	3	3	1
CO3	9	9	9	3	3	3	1
CO4	9	9	3	3	3	1	1
CO5	9	3	3	3	1	1	1
CO6	9	3	3	1	1	1	1
Total Contributio n of COs to PO s	54	42	36	16	14	10	6
Weighted Percentage of COs Contributio n to PO s	6.37	5.58	6.19	3.27	3.21	2.64	2.29

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

UNIT-I: SPECIAL FUNCTIONS (12 Hours) Legendre's Polynomials and Functions- Differential Equations and Solutions-Generating Functions- Orthogonality-Relation between Legendre Polynomial and their Derivatives Recurrence Relations- Bessel's Function-Differential Equation and Solution-Generating Functions-Recurrence Relations- Hermite function.

UNIT-II: COMPLEX VARIABLE THEORY

Functions of a Complex Variable-Single and Multi valued Functions-Cauchy-Reimann Differential Equation-Analytical Line Integrals of Complex Function-Cauchy's Integral Theorem and Integral Formula-Derivatives of an Analytic Function-Taylor's Variables Residue and Cauchy's Residue Theorem.

UNIT-III: LINEAR SPACE

Definition of Vector Space-Linear Dependence-Linear Independence-Basis-Dimension of a Vector Space-Representation of Vectors and Linear Operators with respect to Basis-Schmidt Orthogonalization Process-Inner Product.

UNIT- IV: FOURIER SERIES & LAPLACE TRANSFORMS

Fourier Series-Dirichlet's Theorem-Change of Interval-Complex Form-Fourier Series in the Interval $(0, \infty)$ - Uses of Fourier Series.-Laplace Transform-Definition-Properties-Translation Property-Inverse Laplace Transform-Properties, example problems.

UNIT- V: GROUP THEORY

Definition of Groups-Multiplication table - Subgroups, cosets and classes - Point and space groups -Homomorphism and isomorphism – Reducible and irreducible representations – Schur's lemma -- The great orthogonality theorem (qualitative treatment without proof) – Formation of character table of C2v and C3v -- Elementary ideas of rotation groups.

Text Books:

- 1. Mathematical Physics, SathyaPrakash, 2002, Sultan Chand & Sons. [ISBN: 81-7014-925-8] (All Units)
- 2. Mathematical methods for Physicists, Arfken, weber & Harris, 2005, 7th edition, Elsevier

(12 Hours)

(12 Hours)

(12 Hours)

Academic Press.

3. Elements of group theory for Physicists - A.W. Joshi, -Wiley Eastern, 2002 (Unit – V)

Reference books:

- 1. Mathematical Physics, B.D. Gupta, 3rd Edition, 2006, Vikas Publishing House.
- 2. Mathematical Physics, B.S. Rajput, 17th Edition 2004, PragatiPrakashan, Meerut
- 3. Mathematical Physics, P.K. Chattopadhayay, New Age International, New Delhi.
- 4. Mathematical Physics, P.P. Gupta, Yadav& Malik, KedarnathRamnath, Meerut.

Web Reference:

1.https://pdfcoffee.com/download/mathematical-physics-by-satya-prakash-pdf-50pdf-pdf-free.html 2. https://isidore.co/calibre/get/pdf/4469

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core: III	e: III 23PHP03 QUANTUM		60	Λ
	Cole. III	23111103	MECHANICS-I	00	+

Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
First	Ι	25	75	100

Preamble: The aim is to make the students to understand the concepts of Matrix formalism, learn the approximation methods and to know the Orbital and Spin angular momentum.

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level
CO1	recall the limitations of Classical Physics, wave packets, wave functions, Schrödinger equation, operators and eigen values in quantum mechanical systems	K1
CO2	explain matrix formalisms in quantum mechanics, Schrödinger equation of motion, approximation methods and commutation relations.	K2
CO3	apply Schrödinger equation and approximation methods to solve quantum mechanical systems and to find eigen values of the systems	К3
CO4	Correlate the various approximation methods, equation of motions in Schrodinger, Heisenberg and Interaction pictures	K4
CO5	Validate the matrix representation of angular momentum operators, addition of angular momentum and Clebsch-Gordon co-efficients	K5
CO6	formulate wave functions and operators in matrix form.	K6

CO- PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping									
PO-COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7		
CO1	9	9	9	9	9	9	3		
CO2	9	9	9	9	9	3	3		
CO3	9	9	9	3	3	3	1		
CO4	9	9	3	1	1	3	1		
CO5	9	3	3	1	1	1	1		
CO6	9	3	3	1	1	1	1		
Total Contributio n of COs to PO s	54	42	36	24	24	20	10		
Weighted Percentage of COs Contributio n to PO s	6.37	5.58	6.19	4.91	5.51	5.29	3.83		

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PO

SYLLABUS

UNIT-I: INTRODUCTION AND MATRIX FORMALISM

Inadequacy of classical Physics - Wave packets –Uncertainty relations-Schrodinger wave equation and probabilistic interpretation. Hilbert space – Dirac's bra and ket notation – Operators as matrices – Matrix form of wave functions – Unitary transformation: Change of basis – Properties of unitary transformations – Schrodinger picture – Heisenberg picture – Interaction picture

UNIT- II : SPHERICALLY SYMMETRIC SYSTEMS

Schrödinger's equation for spherically symmetric potentials – Three dimensional harmonic oscillator – Rigid rotator with free axis – Solution of wave equation and eigen function for the rotator – Rigid rotator in a fixed plane – The Hydrogen atom – ϕ , θ and r equations and their solutions – Energy eigen values for the hydrogen atom – Degeneracy – The normal state of hydrogen atom

UNIT- III: INDEPENDENT APPROXIMATION METHODS

Time Independent Perturbation Theory in Non-Degenerate Case-Ground State of Helium Atom-Degenerate Case-Stark Effect in Hydrogen-Variation Method & its Application to Hydrogen Molecule- WKB Approximation.

UNIT-IV:TIME DEPENDENT PERTURBATION THEORY

Time Dependent Perturbation Theory-First and Second Order Transitions-Transition to Continuum of States-Fermi Golden Rule-Constant and Harmonic Perturbation-Transition Probabilities-Selection Rules for Dipole Radiation-Collision-Adiabatic Approximation

UNIT- V: ANGULAR MOMENTUM (12 Hours)

Orbital Angular Momentum-Spin Angular Momentum-Total Angular Momentum Operators-Commutation Relations of Total Angular Momentum with Components-Ladder Operators-Commutation Relation of Jz with J_+ and J_- Eigen Values of J^2 , Jz -Matrix Representation of J^2 , Jz, J_+ and J_- Addition of Angular Momenta- Clebsch Gordon Coefficients-Calculation of Clebsch Gordon

(12 Hours)

(12 Hours)

(12 Hours)

Coefficients for $j_1=1/2$, $j_2=1/2$.

Text Books:

- 1. **QuantumMechanics**, Aruldas, 2nd edition, 2013, PHI Learning Pvt. Ltd. [ISBN: 978-81-203-3635-3] (All Units)
- 2. Introduction to Quantum Mechanics –David J Griffiths– Pearson- 2nd edition- 2016. [ISBN: 978-93-325-4289-1]

Reference books:

- 1. **Quantum Mechanics,** Gupta, Kumar & Sharma, 34th Edition,2017, Jai Prakash Nath Publications. (All units)
- 2. Advanced Quantum Mechanics, Satya Prakash, 2001, KedarNath Ram Nath Co., Meerut.
- 3. Quantum Mechanics, Leonard.I. Schiff, 1968, McGraw Hill 3rd Edition. [ISBN: 0-07-085643-5] (Unit II)
- 4. Quantum Mechanics, V. Devanathan, 2005, Narosa Publishing House, New Delhi.
- 5. A textbook of Quantum Mechanics, P.M. Mathews and Venkatesan, 27th reprint 2002, Tata McGraw Hill publishing company Ltd., New Delhi.

Web Reference:

- 1. https://ocw.mit.edu> coursesPDF Web result Chapter 5 The Dirac Formalism and Hilbert Spaces (unit 1)
- https://www.bbau.ac.in > deptPDF
 Web results Matrix representations of wave functions and operators ... (Unit 1)
- 3. https://www.rpi.edu> lct4PDF Web results 4.1 Schrödinger Equation in Spherical Coordinates (unit 2)
- https://www.google.com/url?sa=t&source=web&rct=j&url=https://ocw.mit.edu/courses/physic s/8-06-quantum-physics-iii-spring-2018/lecturEnotes/MIT8_06S18ch4.pdf&ved=2ahUKEwiEg53JzqPzAhU0yzgGHZ1DAyIQFnoECDEQA Q&usg=AOvVaw0uqBxeeJUf3_kKF1uj3SU0 (unit 4 and 5)
- https://www.google.com/url?sa=t&source=web&rct=j&url=https://0space.org/file/13199/down load%3Ftoken%3D3MFpY12s&ved=2ahUKEwi80tXD0KPzAhXOV30KHWSQAgEQFnoEC DQQAQ&usg=AOvVaw1R_dXurAqOpeCnFtuREw30 (unit 5)

Category	Course Type	Course Code	Course Title		Contact Hours	Credit				
Part – III	Core: IV	23PHP04	NUMERICAL METHODS & MATLAB PROGRAMMING		METHODS & MATLAB		60	4		
Contact he	Contact hours per week: 5									
Year		Semester	Internal Marks	Externa Marks	-	Total Marks				
First		Ι	25	75		100				
Preamble:ImageImageImageImagePreamble:The aim is to provide the students to develop appropriate numerical abilities, prove results for various numerical root finding methods and to code various numerical methods in a modern computer languageImage										
CO Staten	nent: On th	ne successful co	mpletion of the co	ourse, studer	nts will be a	able to				

COs	CO Statement	Knowledge Level
CO1	remember the Differential equation by using various Numerical methods and MATLAB basics,	K1
CO2	explain Newton Raphson Method, Guass elimination Method, Rungekutta method, SimPOn's rule, Trapezoidal rule, Gauss Quadrature, MATLAB fundamentals, in programming and Graphics	K2
CO3	apply various numerical methods and MATLAB Help and Demos, Control flow statements, MATLAB fundamentals, programs and Graphics with 2D and 3D plots.	К3
CO4	correlate Different Techniques in Numerical methods like Giraffe's root square methods and MATLAB programs for various loops MATLAB Built-In Functions	K4
CO5	validate the different methods in Numerical Methods and fundamentals in Basic MATLAB programming and interpretation of 2D and 3D Graphics in MATLAB	K5
CO6	Adapt numerical Methods in many mathematical fields and MATLAB programming in many computerize world,	K6
K1 – Rem	ember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Ev	aluate; K6 – Create

CO- PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

PO COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7		
CO1	9	9	9	9	9	3	3		
CO2	9	9	9	9	9	3	3		
CO3	9	9	9	9	3	3	3		
CO4	9	9	9	3	3	1	1		
CO5	9	9	3	3	1	1	1		
CO6	9	9	3	3	1	1	1		
Total Contributio n of COs to POs	54	54	42	36	26	12	12		
Weighted Percentage of COs Contributio n to POs	6.37	7.18	7.22	7.37	5.97	3.17	4.59		
Level of corre correlation be			tion; 1 – L	ow correla	tion; 3 – N	ledium cor	relation; 9- High		

SYLLABUS

UNIT -I : NUMERICAL DIFFERENTIATION

Finding Roots of a Polynomial-Bisection Method-Newton Raphson Method-Solution of Simultaneous Linear Equation by Gauss Elimination Method (includes inverse of matrices)-Solution of Ordinary Differential Equation by Euler, Runge-Kutta Fourth Order Method for solving first order Ordinary Differential Equations.

UNIT-II: NUMERICAL INTEGRATION

Newton's cotes formula-Trapezoidal rule-Simpon's 1/3 rule- Simpon's 3/8 rule -Gaussian quadrature method-(2 point and 3 point formulae)-Giraffe's root square method for solving algebraic equation.

UNIT- III : FUNDAMENTALS (12 Hours)

Introduction-MATLAB Features-Desktop windows: Command, Workspace, Command History, Array Editor and Current Directory -MATLAB Help and Demos- MATLAB Functions, Operators and Commands. Basic Arithmetic in MATLAB-Basic Operations with Scalars, Vectors and Arrays-Matrices and Matrix Operations-Complex Numbers- MATLAB Built-In Functions- Saving and loading data – Plotting simple graphs-Illustrative Examples

UNIT- IV : MATLAB PROGRAMMING (12 Hours)

Control Flow Statements: **if, else, else if, switch** Statements-**for, while** Loop Structures-**break** Statement-Input/output Commands-Script "m" Files -Function "m" Files-Controlling Output - Language specific features – Advanced Data objects . Applications – (Programs about Linear Algebra – Curve fitting and Interpolation – Data analysis and Statistics – Numerical Integration – Ordinary differential equations – Nonlinear Algebraic Equations).

UNIT -V : MATLAB Graphics (12 Hours)

2D Plots-Planar Plots, Log Plots, Scatter Plots, Contour Plots- Using subplot to Layout multiple graphs -Multiple Figures, Graph of a Function-Titles, Labels, Text in a Graph- Line Types, Marker types, Colors-3D Graphics-Curve Plots-Mesh and Surface Plots- Handle Graphics – Saving and printing Graphs – Errors - Illustrative Examples.

Text Books:

- 1. Numerical methods Kandasamy. P, Thilagavathi. K, Volume I and II, 2004, S. Chand and Company Ltd, New Delhi. (Units I & II)
- 2. Getting Started with MATLAB A Quick Introduction for Scientists and Engineers, RudraPratap, 2003, Oxford University Press. (Units III V)
- **3.** MATLAB An Introduction with Applications Amos Gilat, 2007, John Wiley & Sons, Inc., U.K. [ISBN: 978-81-26511394-9] (Units III V)

Reference Books:

- 1. Numerical methods in Science and Engineering, M.K. Venkataraman, 1996, National Publishing Co. Madras.
- 2. Engineering and Scientific Computations Using MATLAB, Sergey E. Lyshevski, 2003, JohnWiley&SonsInc, publication. [ISBN 0-471-46200-4]
- 3. Numerical Methods Using Matlab, John Mathews &Kurtis Fink,2006, Prentice Hall, New Jersey.
- 4. Introductory Methods of Numerical Analysis, S.S. Sastry, 2005, Prentice Hall.
- 5. Introduction to MATLAB 7 for Engineers, William John Palm, 2005, McGraw, Hill Professional.
- 6. Introduction to MATLAB 7, Dolores M. Etter, David C. Kuncicky, 2004, Prentice Hall.

(12 Hours)

Web Reference:

1.http://demo.prahu-hub.com/A2C1ED269A17F/numerical-methods-by-kandasamy-thilagavathy-gunavathy.pdf

 $2.\ https://rahulpatel121.files.wordpress.com/2018/07/s-s-sastry-introductory-methods-of-numerical-analysis-2012-phi-learning-pvt-ltd.pdf$

 $3.\ https://www.researchgate.net/profile/Hazim_Tahir/post/How-can-I-fit-a-curve-to-data-from-a-thermodynamic-model-like-$

 $NRTL/attachment/59d63d25c49f478072ea8502/AS\%3A273757480914957\%401442280277251/down load/MATLAB_+An+Introduction+with+Ap+-+Amos+Gilat.pdf$

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core:V Elective	23PHP05A	ESSENTIALS OF	48	3
	I		NANOSCIENCE		

Contact hours per week: 4

Year	Year Semester		External Marks	Total Marks	
First	Ι	25	75	100	

Preamble: The aim is to provide the basic knowledge about basics of nano science and technology and to acquire the knowledge about synthesis methods and characterization techniques and its applications

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level					
CO1	recall the basic concepts of Nano science, Nanotechnology and Nanoscale, Introduction to polymers	K1					
CO2	explain the Nano material and its structure, properties, importance and applications.	К2					
CO3	apply the fabrication methods to synthesis the new nano particles	К3					
CO4	infer the chemical interactions, quantum confinement and emission characteristics of semi- conductor nano crystals	K4					
CO5	verify the nanoparticles dimension and justify quantum dot, core shell nano particles and carbon nano tubes	K5					
CO6	create the nano particles and nano materials in the field of agriculture and medical, other field to solve the recent problems	K6					
K1 – Ren	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create						

CO – PO Maj	pping						
PO CQs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
C01	9	9	9	9	9	3	3
CO2	9	9	9	3	3	3	3
CO3	9	9	9	9	3	2	3
CO4	9	9	9	3	3	2	3
CO5	9	9	3	3	2	1	3
CO6	9	9	3	3	3	3	1
Total Contributio n of COs to POs	54	54	42	30	23	14	16
Weighted Percentage of COs Contributio n to POs Level of corre		3.91 No correlation	6.08 n; 1 – Low	<u>3.86</u> correlatio	2.03 n; 3 – Medi	1.52 um correlatio	2.22 on; 9- High
History of Nar Definitions – S Nanoscience a Principles and nature – Natur U NIT -II : N A Structure , pro Semiconducto carbon nanotu nicelles and re U NIT - III : I Introduction to copolymers - G selected synthe	hoscience an Scale of mate nd nanotech l types) – Na al nanomate ANOMATE perties and i r quantum de bes (single v everse micel POLYMER o polymers – Glass transiti etic and Biop	mportance of tots, core-shell valled and mul les – Nanopor IC NANOM classification ion temperatur polymers – Po	logy – Anc , micro and ication met l nanotechn nic, organic the followin nanopartic lti walled) a ous Materia ATERIALS of polymen re of Polymen lystyrene, F	AND NAN ient, Medie nanoscale hods – Top ology prac and biolog ng Nanoma les - carbon and grapher als. (Synthe S rs – types o ers – Struc Polyvinyl a	eval and Mod – pioneers a p-down and b eticed by natu- gical origin. aterials - Met- n based nano- nes – Supran- esis of the na of polymeriza- ture, propert- lcohol, Polys	lern period – nd contributor pottom-up app ure –Inspiratio (allic nanopart materials – fu nolecules – De nomaterials n (ation processe ies and impor	rs in proaches ons from (9 Hours) ticles – illerenes, endrimers, ot included) 10 Hours) s – Block tance of onate,

stabilization – Surface energy minimization mechanisms – Application of classical thermodynamics 133 to nanomaterials (Small system thermodynamics) – Chemical interactions at Nanoscale.- Primary interactions (Ionic, Covalent and Metallic bonds) – Secondary interactions – Electrostatic interaction, Hydrogen bonding, Van-der waals attraction, hydrophobic effect.

UNIT- V: PROPERTIES AT THE NANOSCALE – II

(10 Hours)

Optical properties in metals, semiconductors and insulators- Photoluminescence - Cathode luminescence- Electro luminescence- Fluorescence- Phosphorescence- Surface Plasmon resonance and optical properties in metallic nanoparticles – Quantum confinement and emission characteristics of semiconductor nanocrystals – optical properties of core-shell nanoparticles – Mechanical, thermal and electrical properties of carbon based nanomaterials (CNT &graphenes) – Guest-Host relationship and Molecular recognition in supramolecules.

Text Books

- 1. Nanoscience and Nanotechnology M. S. RamachandraRaoShubrasingh [ISBN: 978 81 265 4201 7]. (Units I, II and III)
- 2. **Principles of Nanoscience and Nanotechnology -** M. A. ShahTokeerAhmad, Narosa publishing home pvt. Ltd., [ISBN: 978 81 8487 072 5]. (Units IV and V)

Reference Books

- 1. Nanotechnology, Er. RakeshRathi, 2009-15, S. Chand and Co. Pvt. Ltd.
- 2. Nanotechnology Science Innovations and Oppurtunity, Lynn E.Foster.

Web Reference:

- 1. http://www.lkouniv.ac.in
- 2. http://www.trl.lab.uic.edu
- 3. http://www.nanosensesri.com
- 4. http://www.nanoyou.eu
- 5. <u>http://www.web.pdx.edu</u>

Category	Course Type	Course Code	Course Title Contact Hours			Credit			
Part – III	Core: V Elective: I	21PHP05 B	RADIATION PHYSICS		48		3		
Contact ho	Contact hours per week: 4								
Year	ear Semester		Externa Marks			Total Marks			
First		Ι	50	50			100		
	Preamble: The aim is to provide deeper knowledge and understanding of Radiation Physics and to learn information about their principles and methods.								
CO Statem	CO Statement: On the successful completion of the course, students will be able to								
COs	Knowledge								

CO1	recall an introduction of Radiation physics, basics of radiotherapy, environmental radioactivity introductions	K1
CO2	elucidate the various types of interactions between the elementary particles, linear accelerators and measuring equipments	К2
CO3	identify the particle detectors of gas electron multiplier, surface photoemission detector and semiconductor detector	К3
CO4	compare attenuation with absorption factors of medicine in the measuring equipment	K4
CO5	evaluate toxic agent and mitigating internal radiation hazards, airborne radioactivity	K5
CO6	bring out the interaction of the particles using particle detectors, prepare to protect human beings from organizational plan, laboratory procedure for protection of radiation	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	9	9	9	9	9	3	3	
CO2	9	9	9	3	3	3	3	
CO3	9	9	9	9	3	2	3	
CO4	9	9	9	3	3	2	3	
CO5	9	9	3	3	2	1	3	
CO6	9	9	3	3	3	3	1	
Total Contributio n of COs to POs	54	54	42	30	23	14	16	
Weighted Percentage of COs Contributio								
n to POs	3.33	3.91	6.08	3.86	2.03	1.52	2.22	
Level of correl	ation: $0 - N$	No correlati	on; 1 – Lov	v correlation	n; 3 – Medi	um correlat	tion; 9- High	

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

Unit –I: BASIC RADIATION PHYSICS

(9 Hours)

Introduction to radiation Physics- Atomic and Nuclear structure- Electron interaction- Photon interaction- Classification of forces in nature, fundamental particles, radiation- Atomic and nuclear structure- Bohr's model of the hydrogen atom- Radioactivity- Modes of radioactive decay- Electron Interaction- Photon Interaction.

Unit –II: RADIATION AND PARTICLE DETECTOR

Interaction of particles and radiation with matter- Photoelectric and Compton effect- Gas Electron Multiplier (GEM)- Detection of neutrons- Surface photoemission detectors- Photo cathodes and Photo tubes- Semiconductor detectors.

Unit- III : RADIOACTIVITY IN THE ENVIRONMENTAL MEDIA

Introduction to environmental radioactivity- Airborne radioactivity- Production and Propagation of Airborne radioactivity by tall & short stacks- Water Activation- Geological Media Activation- The Propagation of Radio nuclides Through Geological Media.

Unit -IV : RADIOACTIVITY IN MEDICINE

Basics of radiotherapy- Linear accelerators- Measuring equipments- Treatment planning & process-Dependence of photon energy and atomic number- attenuation and absorption.

Unit -V : RADIATION PROTECTION

Human Factors- Environmental Factors- Toxic Agents, such as radioactive Material- Organizational Plan for Radiation Protection- Radiation Lab Protection Procedures- Accident Anticipation-Mitigating Internal Radiation Hazards.

Web References:

- 1. <u>http://www-naweb.iaea.org/nahu/DMRP/documents/Chapter1.pdf</u>
- 2. https://www.asc.ohio-state.edu/honscheid.1/s12-780/references/turku_lecturenotes.pdf
- 3. https://www-esh.fnal.gov/TM1934_PDF_Files/TM_1934_Revision_9B.pdf
- 4. http://www.imre.ucl.ac.be/rpr/sv2012/RDTH3120-partie1.pdf
- 5. http://www.ehs.washington.edu/rsotrain/radprotectionprinciples/table_of_contents.pdf

Categor y	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core:V Elective I	23PHP05C	PROGRAMMING IN PYTHON	48	3

Contact hours per week: 4

Year	Semester	InternalExternalMarksMarks		Total Marks
First	Ι	25	75	100

Preamble: The Paper offers the understanding of basic principles in python and skills to create computer programs for small scale usage.

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level
CO1	Recall syntax and semantics of various programming constructs.	K1
CO2	Illustrate the process of structuring data using lists, tuples, and dictionaries	K2
CO3	Identify appropriate programming structure for a given problem.	К3
CO4	Convert an algorithm into a python program	K4

(10 Hours)

(10 Hours)

(9 Hours)

(10 Hours)

analyze the con	ncepts of list	and Diction	aries, Tupl	es		K5	
Infer the object-oriented concepts in python						K6	
nber; K2 – Ui	nderstand; K	X3 – Apply;	K4 – Ana	lyze; K5 – F	Evaluate; K6	– Create	
СО-РО	MAPPING	(COURSE	ARTICUI	LATION M	ATRIX)		
apping							
PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
9	9	9	9	9	3	3	
9	9	9	3	3	3	3	
9	9	9	9	3	2	3	
9	9	9	3	3	2	3	
9	9	3	3	2	1	3	
9	9	3	3	3	3	1	
54	54	42	30	23	14	16	
3.33	3.91	6.08	3.86	2.03	1.52	2.22	
relation: 0 – N	No correlatio			n; 3 – Medi	um correlatio	on; 9- High	
Basics and Fu		SYLL	ABUS				
	nfer the object nber; K2 – Un CO-PO apping PO 1 9 9 9 9 9 9 9 54 54 3.33 relation: $0 - 1$	IIIICO-PO MAPPINGappingPO 1PO 2999999999999999999999999999999933.333.91	nfer the object-oriented concepts in pytnber; K2 – Understand; K3 – Apply;CO-PO MAPPING (COURSEappingPO 1PO 2PO 3999999999999999993993993993996.08relation: 0 – No correlation; 1 – Low between COs and POs	Infer the object-oriented concepts in pythonnber; K2 – Understand; K3 – Apply; K4 – AnaCO-PO MAPPING (COURSE ARTICULappingPO 1PO 2PO 3PO 4999999999399993999339993399933993339933399333999339993399	Point PO 2 PO 3 PO 4 PO 5 9 9 9 9 9 9 9 9 3 3 9 9 9 3 3 9 9 9 3 3 9 9 9 3 3 9 9 9 3 3 9 9 3 3 2 9 9 3 3 2 9 9 3 3 2 9 9 3 3 2 9 9 3 3 3 9 9 3 3 3 9 9 3 3 3 9 9 3 3 3 9 9 3 3 3 9 3 3 3 3 9 3 3 3 3 1 54 54 42 30 23 3	A interview of the object-oriented concepts in pythonaber; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6CO-PO MAPPING (COURSE ARTICULATION MATRIX)appingPO 1PO 2PO 3PO 4PO 5PO 69999333999933299933219993321999332199332199332199331414545442302314996.083.862.031.52relation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; between COs and POs	

The way of the program: What is a program? - Running Python. - The first program. - Arithmetic operators - Values and types - Variables, expressions and statements: Assignment statements - Variable names - Expressions and statements - Script mode - Order of operations - String operations Comments – Debugging. Functions: Function calls - Math functions - Composition – Adding new functions – Definition and uses - Flow of execution - Parameters and arguments- Variables and parameters are local - Fruitful functions and void functions - Why functions?

UNIT -II : Conditionals, Recursion, Iteration, Strings

Conditionals and Recursion: Floor division and modulus - Boolean expressions - Logical operators -Conditional execution - Alternative execution - Chained conditionals - Nested conditionals Recursion - Infinite recursion – Keyboard input. Fruitful functions: Return values Incremental development-Composition - Boolean functions. Iteration: Reassignment - Updating variables - The while statement - break -square roots - Strings: String is a sequence - Traversal with a for loop - String slices -Strings are immutable - Searching - Looping and counting -String methods- The in operator -String comparison.

(9 Hours)

UNIT-III: Lists (10 Hours)
Lists: A list is a sequence - Lists are mutable - Traversing a list - List operations - List slices
- List methods - Map, filter and reduce Deleting elements - Lists and strings Objects and
values - Aliasing - List arguments
UNIT-IV Dictionaries, Tuples (10 Hours)
Dictionaries: A dictionary is a mapping Dictionary as a collection of counters - Looping and
dictionaries - Reverse lookup Dictionaries and lists - Memos - Global variables. Tuples: Tuples
are immutable - Tuple assignment - Tuples as return values - Variable length argument tuples -
Lists and tuples . Dictionaries and tuples.
UNIT- V
Object oriented Programming : Introduction to classes and objects- define class- object composition –
encapsulation – inheritance
Internet Client Programming : Internet Clients – Transferring files – Network news- E- mail- Related
modules
Text Books:
1. Michel urban, Joel Murach. Murach's Python programming, Mike Murach& Associates, First
Indian Reprint, 2017
2. Wesley J. Chun, Core PYTHON Applications programming, Prentice Hall, Third Edition, 2013
3.Allen B. Downey, "Think Python: How to Think Like a Computer Scientist ", 2nd Edition 2012,
O'Reilly

Reference books:

1.Mark Lutz, learning Python, O ' Reily media, Fifth Edition, 2013

2. Kenneth A. Lambert, "Fundamentals of Python First Programs", Second Edition

3. Rashi Gupta, "Makinf Use of Python", Willey publishing Inc,

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part –	Core:	23PHP06	QUANTUM	60	1
III	VI	23FHF00	MECHANICS - II	00	4

Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	25	75	100

Preamble: The aim is to make the students understand the Scattering theory, the applications to atomic structures, about the identical particles and their spin and quantum field theory.

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level
CO1	recite the definitions of scattering amplitude and identical particles	K1
CO2	interpret the scattering process in quantum mechanical system and the application of approximation methods to atomic structure	К2

CO3	apply symmetric and anti symmetric wave functions in central field approximation and apply approximation methods to find scattering amplitude and scattering cross section	К3
CO4	justify probability and current densities and negative energy states from relativistic wave equations	K4
CO5	quantize classical and quantum mechanical equations of motions.	K5
CO6	construct symmetric and anti symmetric wave functions	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

CO - I O Mapping							
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	3	9	3	3
CO2	9	9	9	3	9	3	3
CO3	9	3	3	3	3	3	1
CO4	3	3	3	1	3	1	1
CO5	1	1	1	1	1	1	1
CO6	1	1	1	1	1	1	1
Total Contributio n of COs to POs	32	26	26	12	26	12	10
Weighted Percentage of COs Contributio n to POs	3.77	3.45	4.47	2.45	5.97	3.17	3.83
Level of correl correlation be			ition; 1 – L	ow correlat	ion; 3 – Me	dium correlatio	n; 9- High

Unit –I: SCATTERING THEORY

SYLLABUS

(12 Hours) Scattering Amplitude - Expression in terms of Green's Function - Born Approximation and its Validity - Partial Wave Analysis - Phase Shifts - Scattering by Coulomb and Yukawa Potential **Unit -II : APPLICATION TO ATOMIC STRUCTURE** (12 Hours) Central Field Approximation - Thomas Fermi Model --Hartree's Self Consistent Model -- HartreeFock Equation - Alkali Atoms - Doublet Separation - Intensities - Complex Atoms - Coupling Schemes **Unit –III: RELATIVISTIC WAVE EQUATION** (12 Hours) Klein Gordon Equation - Plane Wave Equation - Charge and Current Density - Application to the study of Hydrogen Like Atoms - Dirac Relativistic Equation for a Free Particle - Dirac Matrices - Dirac Equation in Electromagnetic Field - Negative Energy States.

Unit -IV: IDENTICAL PARTICLES AND SPIN

Identical particles – Symmetric and anti-symmetric wave functions – Construction of symmetric and antisymmetric wave functions – Pauli's exclusion principle – Physical significance – Pauli's spin operator – Commutation relations

Unit –V: QUANTUM FIELD THEORY

(12 Hours)

Quantization of Real Scalar wave Field – Quantization of Complex Scalar wave Field - Quantization procedure for particles - Classical Lagrangian Equation -Classical Hamiltonian Equation - Field Quantization of the Non - Relativistic Schrodinger Equation - Creation, Destruction and Number Operators.

Text Book :

- 1. **QuantumMechanics** -Aruldas, 2nd edition, 2013, PHI Learning Pvt. Ltd. [ISBN: 978-81-203-3635-3] (All Units)
- 2. Quantum Mechanics -Leonard.I. Schiff, 1968, McGraw Hill 3rd Edition. [ISBN: 0-07-085643-5] (Unit II)
- 3. Introduction to Quantum Mechanics David J Griffiths, Pearson- 2nd edition- 2016. [ISBN: 978-93-325-4289-1]

Reference Books

- 1. A Text Book of Quantum Mechanics-P.M. Mathews & K. Venkatesan-Tata McGraw Hill 29th Reprint 2002
- 2. Quantum Mechanics-Devanathan-Narosa Publishing-New Delhi, 2005
- 3. Quantum Mechanics-A.K. Ghatak and S. Loganathan- McMilan India 4th Edition, 1999

4. Introduction to Quantum Mechanics – David J Griffiths- Addison Wesley – 2nd edition Web Reference:

- http://juser.fzjuelich.de/record/20885/files/A2_Bluegel.pdf&ved=2ahUKEwienuaa4aPzAhUcIbcAHUd QANMQFnoECAMQAQ&usg=AOvVaw0CEdb862rnJdihdmzyWiAf(unit 1)
- http://scipp.ucsc.edu/~dine/ph216/atomic_physics.pdf&ved=2ahUKEwjEgJC-4aPzAhWvILcAHRglDcEQFnoECAMQAQ&usg=AOvVaw1PQGGLKpoQ6xni51I0riX N (unit 2)
- https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notesgk.pdf&ved=2ahUKEwiZ1erj4aPzAhUc4zgGHX6KAGsQFnoECAMQAQ&usg=AOvVa w0-SNbiYJFpgVJHTdXhyqsW(unit 3)
- 4. https://www.feynmanlectures.caltech.edu/III_04.html(unit 4)
- 5. https://www.britannica.com/science/quantum-field-theory(unit 5)

Category	Course Type	Course Code	Course Title		Contact Hours	Credit
Part – III	Core: VII	23PHP07	ADVANCED ELECTRONICS		60	4
Contact ho	Contact hours per week: 5					
Year	S	emester	Internal Externa Marks Marks		-	Total Marks
First		II	25	75		100

Preamble: The aim is to make the students to understand the concept of semiconductor devices, to gain knowledge about fabrication and characteristics of Integrated Circuits and to learn the concepts of advanced level of digital electronics.

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level
CO1	recall the logic gates, basic types of transistors, counters ,shift registers and flip-flops	K1
CO2	elucidate to make integrated circuits, JFET,MOSFET,SCR, optoelectronic devices by chronologically order	K2
CO3	examine basic laws of Boolean algebra, De- Margan's theorem and types of flip- flops, A/D converter, D/A converter	К3
CO4	analyze the results of integrated circuits and non-linear analog system	K4
CO5	verify the opto electronic devices such as photo register, photo diode, photo transistor and field effect transistors.	K5
CO6	create a new design of synchronous counters by using of flip- flop, karnaugh map	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

PO1	PO2	PO3	PO4	PO5	PO6	PO7
9	9	9	9	3	9	9
9	9	9	9	9	3	3
9	9	9	9	9	3	3
9	9	9	9	9	3	3
9	9	9	9	3	3	1
9	9	3	3	3	1	1
54	54	48	48	36	22	20
6.37	7.18	8.26	9.83	8.27	5.82	7.66
	9 9 9 9 9 9 9 54	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 54 54	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3 54 54 48	999999999999999999999999993354544848	9 9 9 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3 3 9 9 3 3 3 3 54 54 48 48 48 36	999939999993999993999993999933999333993331545448483622

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

Unit -I: SEMICONDUCTOR DEVICES

Field effect transistors – JFET bias line and load line – MOSFET construction and Symbols – FET as a Voltage Variable Resistor-Common Source Amplifier at High Frequencies-Common Drain Amplifier at High Frequencies-Silicon Controlled Rectifier (SCR) Characteristics-SCR Power Control- Tunnel Diode -Optoelectronics: Photo Resistor-Photo Diode-Photo Transistor-LED-Photo Voltaic Effect-Solar Cells.

Unit–II: INTEGRATED CIRCUITS-FABRICATION AND CHARACTERISTICS (12 hours) Integrated circuit technology – Basic monolithic circuits – Epitaxial growth – Masking and etching – Diffusion of impurities – Transistor for monolithic circuits – Monolithic diodes – Integrated resistors-Integrated capacitors – Monolithic circuit layout – Additional isolation methods – LSI and MSI – Metal semiconductor contact.

Unit –III: INTEGRATED CIRCUITS AS ANALOG SYSTEM BUILDING BLOCKS (12 hours)

Linear analog systems: Basic Op.Amp. applications – Sign changer – Scale changer – Phase shifter – Summing amplifier – Voltage to current converter – Current to voltage converter – DC voltage follower – Differential DC amplifier – Stable AC coupled amplifier – Analog integration and differentiation – Electronic analog computation

NONLINEAR ANALOG SYSTEMS:Comparator – Sample and hold circuits – D/A converter: Binary weighted resister and ladder type – A/D converter: Successive type and Dual-slop converters Unit –IV: (12 hours)

FLIP-FLOPS: S-R, Clocked S-R, D, J-K, T, Master-Slave J-K flip-flops – Their state diagrams and characteristic equations – Edge triggering in flip-flops

LOGIC GATES: OR, AND, NOT, NOR and NAND gates, Exclusive OR gate – NAND and NOR as Universal gates.

BOOLEAN ALGEBRA AND MINIMIZATION TECHNIQUES: Basic laws of Boolean algebra – De Morgan's theorems – Adder, Subtractor, Comparator, Decoder / Demultiplexer - Sum of products and Product –of-sums - Karnaugh map (up to four variables only) –Don't care

Unit- V: SYNCHRONOUS COUNTERS (12 hours)

Design of Synchronous Counters: Design of MOD-3, MOD-6 ,and MOD-10 counters using JK Master-slave flip-flops only – Register – 4 bit shift Register – Serial-in serial-out, Serial-in Parallel-out, Parallel-in Serial-out and Parallel-in Parallel-out – Design of four bit self-correcting ring counter using D-flip-flop

Text Book :

- 1. **Principles of Electronics** -V.K.Mehta, Rohit Mehta, S.Chand and Company Pvt Ltd,[ISBN: 81-219-2450-2].(Unit I)
- 2. Modern Physics -R.Murugeshan, (2013), S.Chand and CompantPvt Ltd.
- 3. **Integrated electronics** Jacob Millman, Christos Halkias, Chetan D Parikh, Second Edition, Tata McGraw hill.(Unit II & III)
- 4. **Digital Circuits and Design** -S.Salivahanan, S.Arivazhagan, Third Edition, Vikas Publishing house Pvt Ltd.(Unit IV & V)

Reference Books

- 1. Handbook of Electronics, Gupta and Kumar.
- 2. Digital Fundamentals, Floyd-UBS 1600.
- 3. Digital Principles and Applications, Malvino& Leach, McGraw Hill.
- 4. Applied Electronics, R S Sedha.

Web Reference:

(12 hours)

1. http://web.pdx.edu/~pmoeck/books/Tipler_Llewellyn.pdf

 $2.\ https://dokumen.tips/documents/integrated-electronics-jacob-millman-and-christos-hallkiaspdf.html$

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core: VIII	23PHP08	Introduction to Scientific	60	3
			Research& Solar Energy		
			Research		

Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	25	75	100

Preamble: This would intend to present an outline offundamental research process, a guide to formulating ethical proposals and to give idea about intellectual property rights. Additionally, it would provide comprehensive knowledge of solar cells and solar energy.

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level
CO1	Describe the concept of research, defining and formulating the research problem	K1
CO2	Narrate the significance of report writing	K2
CO3	Seek different applying technique behind solar cell and creates innovative ideas.	К3
CO4	Explore the causes and relationship between IPR and ethics of research	K4
CO5	Create new innovation on the basis of Solar energy and its applications	K5
CO6	Incorporate the creative ideas in solar energy research proposals	K6

K1 – Remember;K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	9	9
CO2	9	9	3	9	3	9	9
CO3	9	9	3	3	9	9	9
CO4	9	3	3	3	3	3	3

CO5	9	3	3	3	1	3	3
CO6	9	3	3	3	3	3	9
Total Contributio n of COs to POs	45	36	24	30	22	36	42
Weighted Percentage of COs Contributio n to POs	5.31	4.78	4.13	6.14	5.05	9.52	16.09

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

Research Introduction to Scientific & Solar Energy Research

(12 Hours)

Motivation and objectives – Research methods vs. Methodology- Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical, concept of applied and basic research process, criteria of good research.

Defining and formulating the research problem, selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, search databases, web as a source, searching the web, identifying gap areas from literature and research database, development of working hypothesis.

UNITII

UNITI

Scientific Writing: Significance of Report Writing, Goals and Objectives, Structure of documents, importance of clear title, abstract or summary, introduction, methods, Results and Discussion, Illustrations and aidsNumbers and statistics, Tables and Figures, Language and grammar, writing proposals and instructions making proposals and instructions making proposals.

and instructions, making presentations, Formatting documents, Drafts and revisions, Editing, Writing popular science /journal article.

UNIT III

(12 Hours)

Ethical aspects of the Research work: Scientific ethics, axiology and ethical values of Science, ethics of the researcher, personal code of conduct, internal code of conduct, conduct guidelines, ethical standards of publication, scientific fraud and malpractice: study of historical and contemporary cases.

IPR- intellectual property rights and patent law, commercialization, copy right, royalty, trade related aspects of intellectual property rights (TRIPS).

Unit -IV: Introduction to Energy Sources and solar

Energy sources – Types of energy sources -solar energy and its uses -Solar radiation at the Earth's Surface - Solar constant.

Fundamentals of solar PV cells and systems : semiconductors as basis for solar cells materials and properties, P-N junction, I-V and QE curves of solar cells -Solar cells for direct conversion of solar energy to electric energy - Solar cell parameter - Efficiency - Single crystal silicon solar cells -

(12 Hours)

Polycrystalline silicon solar cells .

Unit- V:

Applications of Solar Energy:

Solar water heating - space heating and space cooling - solar photo voltaics - agricultural and industrial process heat, solar lighting system- street and home light- principles of solar cooking – advantage and disadvantage of solar cooking.

Text Books :

 $1. \ Research Methodology: Methods \& Techniques, C.R. Kothari New Age$

rnationalPublishers,NewDelhi.(2004) ISBN (13): 978-81-224-2488-1]

- 2. ResearchMethodology, R.PannerselvamPrenticeHallof IndiaPvt. Ltd (2014),[ISBN-978-81-203-4946-9]
- 3. Non-Conventional Energy Sources- B.H.Khan, 2006, Tata McGraw Hill. [ISBN 0-07-060654-4]
- 4. Non-Conventional Energy Sources and Utilisation- Er. R. K. Rajput, (2014)
- S.Chand&Company Pvt. Ltd, [ISBN 81-219-3971-2].

5. Non-Conventional sources of Energy- G.D.Rai, Khanna Publishers, New Delhi. [ISBN: 81-7409-073-8]

6. The Development of *Intellectual Property Rightsin India* Dr. Dilip Kumar & Rahul, Amity school of communication (2017)[ISBN-978-93-84312-04-6]

Reference Books

- 1. EffectiveTechnicalCommunication,M.AshrafRizvi,TataMcGraw–Hill, New Delhi,2005
- 2. Renewable Energy, Godfrey Boyle, Oxford University Press in association with the open University 2004, [ISBN: 9780199261789]
- 3. Principles of Solar Engineering F. Kreith and J.F. Kreider, 1978, Tata McGraw Hill.
- 4. Solar Energy, M.P.Agarwal, 1983 S. Chand and Co., New Delhi.
- 5. Solar Energy, S.P.Sukhatme, 1996, Tata McGraw Hill. [ISBN: 0-07-462453-9]

Web Reference:

- 1. http://oro.open.ac.uk > ...
- 2. Renewable energy. 2nd edition Open Research Online
- 3. https://www.ebooknetworking.net/ebooks/principles-of-solar-engineering.html

4.http://mguniversity.ac.in/syllabus/ug_sec/VI%20Semester%20Skill%20Enhancement%20Courses.pdf

Category	Course Type	Course Code	Course Title		Contact Hours	Credit
Part-III	Core : IX	23PHP09	ADVANCED PHYSICS PRACTICAL-I		120	4
Contact he	ours per we	ek: 5				
Year	S	emester	Internal Marks			Total Marks

The aim is to provide , learn about handling of ent: On the successful co	experiments and t	o know about d	ifferent equ	ipment used	•					
	mpletion of the co	ourse, students v	vill be able f							
(CO Statement: On the successful completion of the course, students will be able to								
			Knowled Level	ge						
identify the basic concept Modern Physics recognize various comma			es in	K1						
illustrate the working prir	nciples of various	experimental se	tups	K2						
properties of solids and li apply the formulae to calc experiments implement the procedures		K3								
various physical constants correlate the relations bet	s and values ween theoretical v		n of	K4						
observe the output values experimental setups		K5								
design the desired circuit and justify the observed v		K6								
	Modern Physics recognize various comma illustrate the working prin use different experimental properties of solids and li apply the formulae to calc experiments implement the procedures and process the MATLAI compare and contrast the various physical constant correlate the relations bet experimental observation observe the output values experimental setups assess rectify the errors if programs design the desired circuit and justify the observed we rewrite the MATLAB pro-	Modern Physics recognize various commands and formulae illustrate the working principles of various use different experimental setup to study va- properties of solids and liquids apply the formulae to calculate the output v- experiments implement the procedures of solving physic and process the MATLAB programs compare and contrast the various methods of various physical constants and values correlate the relations between theoretical v- experimental observations observe the output values of the physical pre- experimental setups assess rectify the errors if any in the execut programs design the desired circuit to carry out the re- and justify the observed values rewrite the MATLAB program based on the the specific problem	Modern Physics recognize various commands and formulae in MATLAB illustrate the working principles of various experimental se use different experimental setup to study various physical properties of solids and liquids apply the formulae to calculate the output values for various experiments implement the procedures of solving physical problems to and process the MATLAB programs compare and contrast the various methods of determination various physical constants and values correlate the relations between theoretical values and experimental observations observe the output values of the physical process using req experimental setups assess rectify the errors if any in the execution of MATLAB programs design the desired circuit to carry out the required experimental and justify the observed values rewrite the MATLAB program based on the requirements of the specific problem	Modern Physics recognize various commands and formulae in MATLAB Illustrate the working principles of various experimental setups use different experimental setup to study various physical properties of solids and liquids apply the formulae to calculate the output values for various experiments implement the procedures of solving physical problems to write and process the MATLAB programs compare and contrast the various methods of determination of various physical constants and values correlate the relations between theoretical values and experimental setups assess rectify the errors if any in the execution of MATLAB programs design the desired circuit to carry out the required experiment and justify the observed values rewrite the MATLAB program based on the requirements of	Modern PhysicsK1recognize various commands and formulae in MATLABK1Illustrate the working principles of various experimental setupsK2use different experimental setup to study various physical properties of solids and liquids apply the formulae to calculate the output values for various experimentsK3mplement the procedures of solving physical problems to write and process the MATLAB programsK3compare and contrast the various methods of determination of various physical constants and values correlate the relations between theoretical values and experimental observationsK4experimental setups assess rectify the errors if any in the execution of MATLAB programsK5mogramsK6					

CO- PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Maj	CO – PO Mapping										
PO-COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7				
C01	9	9	9	9	9	9	3				
CO2	9	9	9	9	9	9	3				
CO3	9	9	3	3	9	9	1				
CO4	9	9	3	3	3	3	1				
CO5	9	9	3	3	3	3	1				
CO6	3	3	0	3	0	3	0				

	to 48 ed ge 5 tio 5.66		27 4.64 tion; 1 – L	30 6.14 ow correla	33 7.58 tion; 3 – N		9.52	9 <u>3.44</u> relation; 9- High	
			SY	LLABUS					
S.No		C	ourse Con	tent			Ins	structional Hours	
1	Young's Mod	ulus-Ellipti	cal Fringes	(Cornu's N	(lethod)				
2	Young's Mod	ulus-Hyper	bolic Fring	es (Cornu's	Method)				
3	Viscosity of a	Liquid-Ma	yer's Oscil	lating Disc					
4	Stefan's Cons	tant							
5	Rydberg's Co	onstant-Sola	r Spectrum						
6	Thickness of	Wire by Ai	r Wedge an	d Diffractio	on				
7	Determination	n of Audio	Frequencies	s-Bridge M	ethod				
8	Thermionic V	Vork Functi	on						
9	Thermal Cond	ductivity-Fo	orbe's Meth	od					
10	Electronic Ch	arge 'e' by	Millikan's	Oil Drop M	lethod			120	
11	Electronic Sp	ecific Char	ge 'e/m' by	Thomson's	s Method				
12	Thermistor-Te	emperature	Coefficient	and Band	Gap Energy	/			
13	Determination Specific Heat of a Liquid-Ferguson's Method								
14	Biprism on Optical Bench-Determination of Wavelength								
15	He-Ne Laser –Measurement of Wavelength using reflectancegrating.								
16	Babinet's Compensator								
17	LG Plate-Res	olving Pow	er						
18	Thickness of	the wire by	diffraction						

19	Fabry-Perot Interferometer-Study of Fine Structure	
20	Geiger Muller Counter-Determination of Half Life of 'In'	
21	MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations	
22	MATLAB Programming – Solution of Ordinary Differential Equations	
23	MATLAB Programming -Runge-Kutta Method	
24	MATLAB Programming -Newton-Raphson Method	
25	MATLAB Programming-Mean, Median & Standard Deviation	
26	MATLAB Programming-Curve Fitting & Interpolation	
27	MATLAB Programming-Matrix Summation, Subtraction and Multiplication	
28	MATLAB Programming-Matrix Inversion and Solution of Simultaneous Equations	
29	He-Ne Laser – Measurement of refractive index of liquids.	
30	He-Ne Laser – Power distribution measurement.	
31	He-Ne Laser – Thickness of Wire	

Category	Course Type	Course Code	Course Title		Contac Hours	Credit
Part – III	Core: X	23PHP10	GENERAL ELECTRONICS PRACTICAL - I		120	4
Contact he	ours per we	eek: 5				
Year	S	Semester	Internal Marks	Externa Marks		Total Marks
First		I & II	40	60		100
experiment	s, learn abo	ut handling of		to know abo	ut differe	edge of general Physics nt equipment used e able to
COs			CO Statement			Knowledge Level
CO1	demonstrate and explain basic electrical and electronic components and different types of circuits recognize variousK1commands and formulae in MATLAB					K1
CO2	-	e working prir applications of		K2		

and UJT

CO3	use CRO and AFO to analyze and study various waveforms and its amplitude and frequency controls apply the circuit equations to calculate the output values for various electronic circuits relate the electronic circuit analysis to write and process the MATLAB program.	К3
CO4	compare and contrast the various circuits for the specific application correlate the relations between theoretical values and experimental observations construct various electronic circuits using diodes, OP-AMP, BJT, SCR, FET and UJT	K4
CO5	measure the output values of the constructed circuits using required tools assess rectify the errors if any in the execution of MATLAB programs	K5
CO6	design the desired circuit based on the parameters and properties of the various electronic components rewrite the MATLAB program based on the requirements of the specific problem	K6

K1 – Remember;K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create;

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

PO-COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
CO1	9	9	9	9	9	9	3	
CO2	9	9	9	9	9	9	3	
CO3	9	9	3	3	9	9	1	
CO4	9	9	3	3	3	3	1	
CO5	9	9	3	3	3	3	1	
CO6	3	3	0	3	0	3	0	
Total Contributio n of COs to POs	48	48	27	30	33	36	9	
Weighted Percentage of COs Contributio n to POs	5.66	6.38	4.64	6.14	7.58	9.52	3.44	
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos								
SYLLABUS ANY FIFTEEN(15) EXPERIMENTS ONLY EXAMINATION AT THE END OF SECOND SEMESTER								

S.No	Course Content	Instructional Hours
1	Design of Regulated and Dual Power Supply.	
2	Basic Logic Gates-Digital IC's	
3	Parameters of Op-Amp	
4	Design of Wave Form Generators- using Op-Amp.	
5	Design of Phase-Shift Oscillator- Op-Amp	
6	Design of Wein's Bridge Oscillator- Op-Amp	
7	Design of Active Filters- Op-Amp	
8	Design of Differential Amplifier- Op-Amp	
9	Sign Changer, Scale Changer, Adder and Subtractor- Op-Amp	
10	Design of UJT Relaxation Oscillator	
11	CRO-Differentiating, Integrating, Clipping and Clamping Circuits, Square Wave Testing	
12	SCR-Characteristics and an Application	
13	Source Follower	120
14	Amplifier-Inverting, Non-Inverting, Voltage Follower- Op- Amp	
15	Characteristics of FET	
16	Digital IC's- Counters	
17	Schmitt Trigger using discrete components and OP-AMP/ Timer 555	
18	D/A converter using Op. Amp	
19	MATLAB Programming-Charging of a Capacitor in an RC Circuit with three Time Constants	
20	MATLAB Programming- Full Wave Rectifier-Determination of (a) Peak-to-Peak Value of Ripple Voltage, (b) DC Output Voltage (c) Discharge Time of the Capacitor (d) Period of Ripple Voltage	
21	MATLAB Programming- Plot of Voltage and Current of an RLC Circuit under Steady State Conditions	
22	MATLAB Programming- NPN Transistor-Plotting Input & Output Characteristics	
23	MATLAB Programming-Frequency Response of a Low Pass Op-Amp Filter Circuit	
24	MATLAB Programming-Diode-Plot of Forward	

Characteristics & Load Line Plot - Estimation of Operating	
Point.	

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core: XI Elective: II	23PHP11A	ASTRONOMY & ASTROPHYSICS	48	3

Contact hours per week: 4

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	25	75	100

Preamble: The aim is to provide the students deeper knowledge and understanding of astronomy, learn information about stars and galaxies and to know about the destruction of stars.

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level
CO1	outline the history of astronomy, stars, galaxies, components of the Sun and stellar evolution	K1
CO2	explain the concepts in highlights of Einstein's special and general theory of relativity, fusion reaction mechanism, classification of galaxies and stages of stars	К2
CO3	classify concepts of astronomy, calculating the distance between stars, components of the Sun, galactic astronomy and stages of stars	К3
CO4	categorize the classification of galaxies and stars	K4
CO5	evaluate the science behind observation of universe	K5
CO6	elaborate the hypothesis behind the geo and helio centric theories, calculating the distance between the stars and its composition, types of galaxies and to formulate the lives and death of stars	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	3	3	9	9	9
CO2	9	9	3	3	9	9	9

CO4	9	9	1	1	9	9	3			
CO5	9	3	1	1	9	9	1			
CO6	9	3	1	1	9	9	1			
Total Contributio n of COs to POs	54	42	12	12	54	54	32			
Weighted Percentage of COs Contributio n to POs	3.33	3.04	1.25	1.71	4.77	5.86	4.44			
Level of corre	Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High									

3

9

9

correlation between COs and Pos

9

CO3

9

3

SYLLABUS

UNIT- I: HISTORY OF ASTRONOMY

Introductory History of Astronomy-Ptolemy's Geocentric Universe-Copernicus' Heliocentric Universe- Tycho Brahe and Galileo's Observations- Kepler's Laws of Planetary Motion-Newtonian Concept Of Gravity-Highlights of Einstein's Special and General Theory Of Relativity-Curved Space Time-Evidence of Curved Space Time-Bending Of Light-Time Dilation

UNIT- II: STARS & GALAXIES

Stars and Galaxies-Distances-Trigonometric Parallax-Inverse Square Law-Magnitude of Stars-Apparent Magnitude-Absolute Magnitude and Luminosity-Color and Temperature- Composition of Stars-Velocity, Mass and Sizes of Stars-Types of Stars- Temperature Dependence-Spectral Types-Hertzsprung - Russell (HR) Diagram-Spectroscopic Parallax

UNIT -III: SUN AND ITS COMPOSITION

The Sun-Its Size and Composition- Sun's Interior Zones-Sun's Surface-Photosphere-Chromosphere-Corona-Sun's Power Source-Fusion Reaction Mechanism.

UNIT IV : GALACTIC ASTRONOMY

Milky Way Hubble classification of galaxies-Spiral galaxies, Elliptical galaxies, Irregular galaxies, Dwarf galaxies; Masses of galaxies-Rotation curves of galaxies; Dark matter

UNIT -V: LIVES AND DEATH OF STARS

Stellar Evolution-Mass Dependence-Giant Molecular Cloud-Protostar-Main Sequence Star-Subgiant, Red Giant, Supergiant-Core Fusion-Red Giant (Or) Supergiant- Planetary Nebula (Or) Supernova-White Dwarfs-Novae And Supernovae- Neutron Stars-Pulsars-Black Holes-Detecting Black Holes

Text Book :

- 1. Lectures on Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqu, Department of Physics, University of Wisconsin-Milwaukee, U.S.A (Dated: Spring 2007).
- 2. Lecture Notes of Department of Physics University of Wisconsin-Milwaukee
- 3. Astrophysics of the Solar System- K.D. Abhayankar, University press (India) Pvt Ltd, January 24, 2017. [ISBN: 9788173719694].
- 4. An Introduction to Planetary Physics The terrastial Planets, William M. Kaula, 1968,

(10 Hours)

(10 Hours)

(9 Hours)

(9 Hours)

(9 Hours)

9

Wiley, NewYork, Space Science text series.5. Astrophysics of the Sun- HaroldZirin, Cambridge University Press, 23 June 1988.

Web Reference:

1. www.astronomynotes.com(All Units)

Category	Course Type	Course Code	Cor	urse Title		Con Ho	tact urs	Credit			
Part – III	Core: XI Elective: II	23PHP11B	EXPERIMENTAL TECHNIQUES 48					3			
Contact he	Contact hours per week: 4										
Year		Semester	Interna Marks		Externa Marks			Total Marks			
First		II	25		75			100			
Preamble:	The aim is	to provide the	students kno	wledge ab	out the	techni	iques b	ehind various			
		s and to handle				_					
CO Staten	nent: On th	e successful co	mpletion of	the course	e, studer	nts wil	ll be ab	le to			
COs	CO Statement Knowledge Level							0			
CO1		errors in me Measuring Ins				-	ers,	K1			
CO2	-	e types of trans Measuring Ins		•	-			K2			
CO3		different types of Instruments	of transduce	rs, amplifi	ers, ele	ctroni	c	K3			
CO4	analyze th	e applications of the second sec	of various el	ectronic m	easurin	g		K4			
CO5		ppropriate meth itioning of sign		lyzing elec	tronic v	waves		K5			
CO6	and Wave	plifiers, filters, e Analyzers						К6			
K1 – Rem	ember; K2	a – Understand	; K3 – App	ly; K4 – A	nalyze	; K5 -	- Evalu	ate; K6 – Create			
	CO)-PO MAPPIN	IG (COUR	SE ARTIC	CULAT	TION	MATE	RIX)			
CO – PO I	CO – PO Mapping										
POs COs								PO7			
CO1	9	9	3	3	9		9	9			
CO2	9	9	3	3	9		9 9				
CO3	9	9	3	3	9		9	9			

CO4	9	9	1	1	9	9	3	
CO5	9	3	1	1	9	9	1	
CO6	9	3	1	1	9	9	1	
Total Contributio n of COs to Pos	54	42	12	12	54	54	32	
Weighted Percentage of COs Contributio n to POs	3.33	3.04	1.25	1.71	4.77	5.86	4.44	
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High								

correlation between COs and Pos SYLLABUS

UNIT- I: MEASUREMENT OF ERRORS (9 Hours)

Accuracy, precision, resolution, sensitivity -absolute and relative errors-Types of errors -gross error, systematic error and random error.

STANDARDS OF MEASUREMENTS: Classification of standards, time and frequency standards, electrical standards.

UNIT- II: ELECTRICAL TRANSDUCER CLASSIFICATION

Active and Passive transducers- selecting a good transducer – requirements of an electrical transducer – transducer types- resistive, inductive, capacitive and Piezoelectric transducer-Digital displacement transducers – thermistors.

UNIT -III: AMPLIFIERS AND SIGNAL CONDITIONING

Instrumentation amplifiers-Isolation amplifiers-Chopper amplifiers-Voltage to frequency converters-Frequency multipliers-logarithmic amplifiers, S/H Circuits Active filters-Low pass, High pass, Band pass and Band stop filters.

UNIT - IV: ELECTRONIC MEASURING INSTRUMENT

Q-meter-Vector impedance meter Digital frequency meter -Digital voltmeter -Phase meter-RF power and voltage measurement -Power factor meter -Vector voltmeter. Display and Recording: X-Y Recorders-Magnetic Tape recorders-Storage Oscilloscope- cathode ray oscilloscope.

UNIT - V: ANALYSIS

Wave Analyzers-Audio frequency Wave analyzer-Harmonic distortion analyzers-Resonant harmonic distortion analyzer-Heterodyne harmonic distortion analyzer-Fundamental suppression harmonic distortion analyzer-Spectrum analyzer.

Text Book :

1. Electrical & Electronics Measurement &Instrumentation, A.K. Sawhney, DhanpatRai and sons. (All Units)

2. Modern Electronic Instrumentation, H. S. Kalsi, 2010, 3rd Edition - Tata McGraw Hill. Reference Books

1. Modern Electronic Instrumentation and Measurement Techniques, A.O. Hefnick and W.D. Cooper., Prentice Hall India Publications.

2. Introduction to Instrumentation and Control, A.K. Ghosh-Prentice Hall India Publications Web Reference:

(10 Hours)

(10 Hours)

(10 Hours)

(9 Hours)

- 1. https://www.academia.edu/8140873/A_K_Sawhney_A_course_in_Electrical_and_Electron <u>ic Measurements and Instrumentation</u>
 <u>https://pdfcoffee.com/h-s-kalsi-electronic-instrumentation-3e-pdf-free.html</u>

 - 3. http://fmcet.in/ECE/EC2351_uw.pdf

Category	Course Type	Course Co	de	Course 7	ſitle	Contact Hours	Credit	
Part – III	Core: XI Elective: II	23PHP110		FUNDAMENTALS OF DATA SCIENCES			3	
Contact ho	ırs per week:							
Year	S	emester	Intern l Mark		ternal Iarks	Total	Marks	
First		II	25		75	1	00	
sorting algor	rithms and sym	bol tables.					data structures,	
CO Statem	ent: On the suc	ccessful compl	letion of the	e course, s	students will	be able to		
COs		СО	Statement				nowledge Level	
	Recall the varion nethods	ous data struct	ures, algor	ithms and	sorting		K1	
	Describe the ba symbol table	asic concepts of	of data stru	ctures, sor	ting and		K2	
	Use appropriat	e data structur	es for varie	d problem	18	К3		
	Examine differ solution for the			gorithms t	to find best	K4		
	Recommend a an application.	specific data s	tructure an	d sorting a	algorithm for		K5	
	Apply Algorith nsertion and d	-	-	ike sorting	g, searching,		K6	
K1 – Reme	mber; K2 – U	nderstand; K	3 – Apply;	K4 – An	alyze; K5 –	Evaluate;K6	– Create	
	CO-PC	MAPPING	(COURSE	ARTICU	JLATION M	IATRIX)		
CO – PO M	apping							
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	9	9	3	3	9	9	9	
CO2	9	9	3	3	9	9	9	

CategoryCourse TypeCourse CodeCourse TitleContact HoursCredit										
 TEXT BOOKS: 1. Ellis Horowitz, SartajShani, (1994), Fundamentals of Data Structures, First Edition, Galgotia Publication. REFERENCE BOOKS: 1. Seymour Lipschutz, Data Structures, Tata McGrawhill, Year 2006. 2. D. Samanta, "Classical Data Structure", Prentice Hall India. 3. G A V PAI, Data Structures and Algorithns Concepts, Techniques Applications, McGraw Hill Education, New Delhi. 										
Symbol Table		v			Hash Tables		() 110015)			
Internal Sortin UNIT –V:	ig- insertion s	-	ort - Merge mbol Table		ip sori – Sort	ing on Severa	al Keys. (9 Hours)			
UNIT IV :	a Incortion		nternal Sor	0	n cort Cont	ing on Sour	(10 Hours)			
Graphs-Introd components an		nition and Te Trees - Short	erminology est path - Ti	- Graph Ro ransitive C	epresentation	– Traversals	s - Connected			
UNIT –III:		Gr	aph and its	applicatio	ons		(10 Hours)			
	orage Mana	gement. Tr					Doubly Linked Binary Tree			
UNIT-II:	-	Lin	ked List a	nd Tree	-	1 4 1 1.	(9 Hours)			
List – Sparse N					-	nografii – A	rrays - Ordered			
UNIT-I:	Data atmostu		tary Data S			no grom A	(9 Hours)			
			SYLL	ABUS						
correlation b					5 – Meur		1011, 9- 111gii			
n to POs Level of corro	3.33	3.04	1.25	1.71	4.77	5.86	4.44			
of COs Contributio										
Percentage of COs										
POs Weighted										
n of COs to	54	42	12	12	54	54	32			
Total Contributio										
CO6	CO6 9 3 1 1 9 9 1									
CO5	9	3	1	1	9	9	1			
CO4	9	9	1	1	9	9	3			
CO3							9			

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – IV	Ability Enhancement	23AEP01	CYBER SECURITY	24	2

Contact h	ours per we	eek: 2					
Year		Semester	Intern l Mark		External Marks		Total Marks
First		II	-		100		100
		to provide the studen	ts, the ba	asics of	cyber secur	rity and the	e security threats in
	activities.		0.1				
CO State	ment: On th	e successful completie	on of the	course	, students v	vill be able	to
CO			4 4				Knowledge
COs			tement				Level
CO1	Recall the	basic concepts of info	ormation	securit	y and its typ	pes	K1
CO2	Gain know measures	ledge on cyber space	issues a	nd cybe	r security		K2
CO3		rious risks and threat	s in cybe	r space			K3
CO4	Apply secu	urity measures to prev	ent ours	elves fr	om threats	in	
CO5	social med						K4
COS	Compare	anous sociai meuia, s	security	issues a	nu measure	.5	K5
CO6	-	secured cyber platforn neir social and profess	-	-	connect eac	h	K6
K1 – Rem		– Understand; K3 –			nalyze; K	5 – Evalua	te; K6 – Create
	CO	D-PO MAPPING (CO	DURSE	ARTIC	CULATION	N MATRI	X)
CO – PO	Mapping						
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	3	9	9
CO5	9	9	3	3	3	9	3
CO6	9	9	3	3	3	3	3
Total Contribu n of COs POs		54	42	42	36	48	42
Weighte Percenta	44/	5.04	5.0	5.8	5.4	8.1	9.3

n to POs							
		,	-Low	correla	tion; 3 – M	ledium cor	relation; 9- High
correlation be	tween COs	s and Pos					
			SYLL	ABUS			
UNIT - I: INF	ORMATI	ON SECURITY					(5 Hours)
History of Info	ormation Se	curity - Need for	Securit	y- Type	s of Securi	ty: Physica	l Security –Network
Security -Pers	sonal Secur	ity –Operation Se	ecurity	-Comm	unication S	Security - 1	Information Security
Threats.							
UNIT -II: INT	roduct	TION TO CYBER	SECU	RITY			(5 Hours)

UNIT -II: INTRODUCTION TO CYBER SECURITY

Cyber Security: Objectives- Roles- Differences between Information Security and Cyber Security. **Cyber Security Principles:** Confidentiality- Integrity – Availability

UNIT -III: RISKS & VULNERABILITIES

Risk Meaning: Risk Management – Problems of Measuring Risk - Risk Levels-Risk Analyzes-Risk Assessment -Response to Risk Terminology- Threats: Components of Threats-Types of Threats-Computing System Vulnerabilities -Hardware Vulnerabilities-Software Vulnerabilities: Vulnerabilities-Data Vulnerabilities-Human Vulnerabilities.

UNIT - IV: SOCIAL MEDIA

Introduction to social media: What, Why -Pros and cons- Security issues in social media: Mail-Facebook-Whatsapp-Twitter-Preventive and control measures.

UNIT -V: CASE STUDY

Impact of social media: Education -Business- Banking-Mobile -Human Life- Present generation-Indian scenario.

Web References:

of COs Contributio

- 1. https://m.youtube.com/watch?v=o6pgd8gLFHg
- 2. https://m.youtube.com/watch?v=3rl4ZjZpcHU
- 3. https://blog.barkly.com/10-fundamental-cybersecurity-lessons-for-beginners
- 4. https://5social media security risk and how to avoid them.html
- 5. https://10 cyber security twitter profiles to watch.html
- 6. https://cyber security in banking 4 trends to watch in 2017.html
- 7. https://gmail hacking security tips-indian cyber security solutions.html
- 8. https://why social media sites are the new cyber weapons of.html
- 9. EBook: A complete guide to Staying Ahead in the Cyber Security Game

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
III	Core : XII	23PHP12	ATOMIC AND MOLECULAR SPECTROSCOPY	60	4

Contact hours per week: 5

Year	Semester	Interna l Marks	External Marks	Total Marks
Second	III	25	75	100

(5 Hours)

(5 Hours)

(4 Hours)

Preamble: The aim is to provide the students, the skills and capability for formulating and analyzing chemical compounds using Atomic and Molecular Spectroscopy

CO Statement: After completion of the course, the learners will be able to

Cos	CO Statement	Knowledge Level
CO1	outline the Atomic Spectra and Study the microwave spectra	K1
CO2	explain the concepts in Atomic and Molecular Spectroscopy	K2
CO3	apply the concepts to understand the properties of molecules	К3
CO4	analyze the properties of atoms and molecules using different types of Spectroscopy	K4
CO5	choose appropriate spectroscopy to analyze atoms and molecules	K5
CO6	develop spectrum of molecules of different types by applying the concepts	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate ; K6- Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

-							
POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	3	3	3
CO3	9	9	3	3	3	1	3
CO4	9	9	3	3	3	1	3
CO5	9	3	3	1	3	1	1
CO6	9	3	3	1	1	1	1
Total Contribution of COs to POs	54	42	30	26	22	16	20
Weighted Percentage of COs Contribution to Pos	6.37	5.58	5.1 6	5.32	5.05	4.23	7.66
Level of correl correlation bet		,	– Low	correla	tion; 3 – M	ledium cor	relation; 9- High

SYLLABUS

UNIT -I: ATOMIC SPECTROSCOPY

Atoms in External Magnetic Fields -Normal Zeeman Effect-Anomalous Zeeman Effect-Magnetic Moment of Atom -Lande's g Formula- Paschen Back Effect- Stark Effect-Hyperfine Structure of Spectral Lines - Spectra of Hydrogen and Alkali Atoms

MICROWAVE SPECTROSCOPY-Experimental Methods-Theory of Microwave Spectra of Linear, Symmetric Top Molecules -Hyperfine Structure

UNIT - II: IR SPECTROSCOPY

Practical Aspects-Theory of IR Rotation Vibration Spectra of Gaseous Diatomic Molecules-Applications-Basic Principles of FTIR Spectroscopy.

Raman Spectroscopy: Classical and Quantum Theory of Raman Effect- Rotation Vibration Raman Spectra of Diatomic and Polyatomic Molecules-Applications-Laser Raman Spectroscopy

UNIT -III: FLUORESCENCE & PHOSPHORESCENCE SPECTROSCOPY(12 Hours)

Electronic Excitation of Diatomic Species-Vibrational Analysis of Band Systems of Diatomic Molecules-Deslander's Table-Intensity Distribution-Franck Condon Principle- Rotational Structure of Electronic Bands-Resonance and Normal Fluorescence - Intensities of Transitions-Phosphorescence-Population of Triplet State -Experimental Methods-Applications of Fluorescence and Phosphorescence

UNIT -IV: NMR SPECTROSCOPY

Quantum Mechanical and Classical Description - Bloch Equations - Relaxation Processes-Experimental Technique-Principle and Working of High Resolution NMR Spectrometer- Chemical Shift

UNIT - V: ESR SPECTROSCOPY

Basic Principles-Experiments-ESR Spectrometer-Reflection Cavity and Microwave Bridge-ESR Spectrum-Hyperfine Structure.

Text books:

1. Molecular Structure and Spectroscopy- G.Aruldhas, 2011, PHI Learning Private Limited. Reference Books:

1. Fundamentals of Molecular Spectroscopy - C. N. Banwell, 1994, Tata McGraw Hill Publishing Company Limited.

Web Reference:

- 1. <u>https://books.google.co.vi/books?id=z08q2SyROjoC&printsec=frontcover&source=gbs_ge_summary_r&cad=0</u>
- <u>http://www3.tellabs.com/cgi-bin/content/view.php?data=fundamentals_of_molecular_spectroscopy_banwell_solutions_book_mediafile_free_file_sharing&filetype=pdf&id=9e219833ce89228ea665a996607beea_8
 </u>
- 3. <u>https://www.prsu.ac.in/backend/web/theme/tender/5860.pdf</u>

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
	Core :	23PHP13	NUCLEAR &		
III	XIII		PARTICLE PHYSICS	60	4

Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
Second	III	25	75	100

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Preamble: The aim is to provide the students, the concepts of Nucleus and elementary particles and to develop skills to find the binding energy, spin and parity values for various elements.

CO Statement: After completion of the course, the learners will be able to

Cos	CO Statement	Knowledge Level (RBT)
CO1	recall the properties of nucleus, radioactive decay, fusion,	K1
	fission reaction mechanism and elementary particles	
CO2	explain the concepts of nuclear theories, decay process of	K2
	particles, nuclear models, fusion reactors and nuclear models	
CO3	classify the concepts of nuclear composition, forms of	К3
	interactions inside the nucleus and models of a nucleus	
CO4	Analyse the classification of nuclear composition, nuclear	K4
	force, properties of radioactive decays, selection rules, magic	
	numbers, thermal reactors and for particle physics	
CO5	evaluate the nuclear properties, decay process, nuclear reaction	K5
	mechanisms and basic conservation laws	
CO6	elaborate the hypothesis behind particle physics, forms of	K6
	interactions and radioactive decay, nuclear energy levels and	
	nuclear models	
K1 – Ren	nember; K2 – Understand; K3 – Apply; K4 – Ana	alyze;

K5 – Evaluate ; K6- Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping								
Pos Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	9	9	9	9	9	9	9	
CO2	9	9	9	9	3	3	3	
CO3	9	9	3	3	3	1	3	
CO4	9	9	3	3	3	1	3	
CO5	9	3	3	1	3	1	1	
CO6	9	3	3	1	1	1	1	
Total Contribution of COs to Pos	54	42	30	26	22	16	20	
Weighted Percentage of COs Contribution to Pos	6.37	5.58	5.16	5.32	5.05	4.23	7.66	
	ation: 0 – N	l No correla	ition; 1 – L	l ow correla	l ition; 3 – N	ledium cor	relation; 9- High	

correlation between COs and POs

SYLLABUS

UNIT I: NUCLEAR PROPERTIES:

Nuclear Structure- Distribution of Nuclear Charge-Nuclear Mass-Mass Spectroscopy-Mass Spectrometer-Theories of Nuclear Composition (proton-electron, proton-neutron)- Tensor Force-Static Force-Exchange Force- Nuclear energy levels - Nuclear angular momentum, parity, isospin - Nuclear magnetic dipole moment - Nuclear electric quadropole moment - Ground state of deuteron.

UNIT II: RADIOACTIVE DECAYS - ALPHA DECAY

Properties of a Particles-Gamow"s Theory of a Decay-Geiger Nuttal Law- a Ray Energies-Fine Structure of α Rays- α Disintegration Energy-Long Range α Particles.

BETA DECAY: Properties of β Particles-General Features of β Ray Spectrum-Pauli"sHypothesis-Neutrino Hypothesis-Fermi["]s Theory of β Decay-Forms of Interactions and Selection Rules.

GAMMA DECAY: Absorption of γ Rays by Matter-Interaction of γ Rays with MatterMeasurement of γ Ray Energies-Internal Conversion.

UNIT III: NUCLEAR REACTIONS AND NUCLEAR MODEL (12 Hours)

Reciprocity theorem- Breit-Wigner formula - Resonance theory - Liquid drop model - Shell model --Evidences for shell model -- Magic numbers -- Harmonic oscillator -- Square-well potential -- Spinorbit interaction – Collective model of a nucleus.

UNIT IV: FISSION AND FUSION REACTOR

Characteristics of fission - Mass distribution of fragments - Radioactive decay processes - Fission cross-section - Energy in fission - Bohr-Wheeler's theory of nuclear fission - Fission reactors -Thermal reactors - Homogeneous reactors - Heterogeneous reactors - Basic fusion processes --Characteristics of fusion - Solar fusion - Controlled fusion reactors.

UNIT V: PARTICLE PHYSICS (12Hours)Nucleons, leptons, mesons, baryons, hyperons, hadrons, strange particles - Classification of fundamental forces and elementary particles - Basic conservation laws - Additional conservation laws: Baryonic, leptonic, strangeness and isospin charges/quantum numbers - Gell-mann--Nishijima 23 formula - Invariance under charge conjugation (C), parity (P) and time reversal (T) – CPT theorem -- Parity nonconservation in weak interactions – Eight-fold way and supermultiplets -SU(3) symmetry and quark model.

Text Books:

1. Nuclear Physics - An Introduction, S. B. Patel, 2009, New Age, New Delhi. (Unit II, III)

2. Nuclear Physics - D.C. Tayal, 2001, Himalaya Pub. House, New Delhi. (Unit I-V)

Web Reference:

- 1. https://www.rac.ac.in/assets/download/Syllabus.php?filename=Njc=
- 2. http://idhavacollegekum.org/svllabus/physics/PG/sem4/NUCLEAR%20AND%20PARTIC LE%20PHYSICS.pdf
- 3. http://www3.tellabs.com/cgibin/content/view.php?data=nuclear physics tayal&filetype=pd f&id=986f50b41754af3cf0045be6ac81807a

Category	Course Type	Course Code	Course Title		Contact Hours	Credit
III	Core : XIV	23PHP14	ELECTROMAGNETIC FIELD THEORY		60	4
Contact hours per week: 5						
Year	Se	emester	Internal	Internal Externa		Total Marks

(12 Hours)

(12 Hours)

(12 Hours)

				Mark	(S	Marks				
First		II		25		75		100		
		-			•	or the fields j ation of elec		y stationary and ic fields.		
		Image: After completion of the course, the learners will be able to Image: CO State of the course, the learners will be able to								
Cos				CO Statem				Level (RBT)		
CO1	equat	recap the basics of electrostatics, magnetostatics and Maxwell's K1 equation								
CO2				ehind elect ic potential		macroscopi	c	K2		
CO3	apply	different	formulae i	in the field	of electrost	atics, magne	eto	K3		
CO4				ctrodynami		natio theory		V A		
CO4	mer	mnovative	ideas in t		electromag	netic theory		K4		
CO5				of differer electrodyn		lectromagne ntials	tic	K5		
CO6	Origi	nate new t	heories an	d innovatio				K6		
K1 Dom	electr	omagnetic	field theo	ory	alve VA	nolyzo, K5	Evoluot	te; K6 – Create		
KI – Kelli	ember	, K 2 – UI	lueistallu	, K3 – App	JIY, K4 – P	Malyze, Ko		ie, Ko – Cleate		
		CO-PC) MAPPI	NG (COUI	RSE ARTI	CULATIO	N MATRI	X)		
CO – PO I	Mappi	ing								
POs Cos		PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CO1		9	9	9	9	9	9	9		
CO2		9	9	9	9	3	3	3		
CO3		9	9	3	3	3	1	3		
CO4		9	9	3	3	3	1	3		
CO5		9	3	3	1	3	1	1		
CO6		9	3	3	1	1	1	1		
Total Contribut of COs t POs		54	42	42 30 26 22 16						
Weighte Percentag of COs	ge	6.37	5.58	5.16	5.32	5.05	4.23	7.66		
Contribut	ion									

to POs

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PO

SYLLABUS (12 Hours)

UNIT I: ELECTROSTATICS

Coulomb's law-Gauss law-differential and integral representation-Electric field-Electric potential-Method of images-Multipole expansions.

UNIT II: ELECTROSTATICS IN MACROSCOPIC MEDIA

Potential and Field due to an Electric Dipole-Dielectric Polarization-External Field of a Dielectric Medium-Gauss' Theorem in a Dielectric-Electric Displacement Vector D-Linear Dielectrics-Relations connecting Electric Susceptibility γ_e , Polarization P, Displacement D and Dielectric Constant-Boundary Conditions of Field Vectors-Molecular Field-ClausiusMosotti Relation for Non-Polar Molecules-Electrostatic Energy and Energy Density.

UNIT III : MAGNETOSTATICS(12 Hours)

Biot-Savart Law - Statement-Lorentz Force Law - Definition of B-Divergence and Curl of B Magnetic Scalar Potential (derivation of expression only)-Equivalence of Small Current Loop and Magnetic Dipole-Magnetic Vector Potential (derivation of expression only).

UNIT IV: ELECTROMAGNETICS

Equation of Continuity-Displacement Current-Derivation of Maxwel's Equations - Physical Significance - Poynting Vector - Momentum in EM Field - Electro Magnetic Potentials-Maxwell's Equations in terms of EM Potentials - Lorentz Gauge-Coulomb Gauge - Boundary Conditions at Interfaces.

UNIT V: RELATIVISTIC ELECTRODYNAMICS

Four Vectors-Transformation Relation for Charge and Current Densities for Electromagnetic Potentials-Covariance of Field Equations in terms of Four Vectors-Covariant Form of Electric and Magnetic Field Equations-Covariance of Electromagnetic Field Tensor-Covariant Form of Lorentz Force Law. **Text books:**

- 1. Electromagnetic Theory, Chopra & Agarwal-, 2016, K. Nath&Co,Educational Publishers,6th Edition. [ISBN: 978-81-924088-9-7] (Unit I-V)
- 2. Electromagnetic Theory & Electrodynamics SathyaPrakash, 2004, KedarNath Ram Nath& co, Publishers New Edition.(Unit II, III, V)

Web Reference:

- 1. https://jemajodelevo.weebly.com/uploads/1/3/4/3/134394711/9f676172e37.pdf
- 2. https://indico.cern.ch/event/817381/contributions/3412315/attachments/1835901/3178259/L ectures.pdf
- 3. https://rcub.ac.in/econtent/ug/bsc/4sem/BSc%20Sem%20IV%20Physics%20Electromagnetic %20Theory.pdf

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
III	Core : XV	23PHP15	INSTITUTIONAL TRAINING	-	1

Contact hours per week: -

Year	Semester	Internal Marks	External Marks	Total Marks
First	III	100	-	100

(12 Hours)

(12 Hours)

(12 Hours)

Preamble: To provide the students a deeper knowledge in Institutional training – creating a opportunity for the students

CO Statement: After completion of the course, the learners will be able to

Cos	CO Statement	Knowledge Level (RBT)
CO1	Identify the problems & solutions related to Institutional	K1
	Training, Article ship Training.	
CO2	Explain the principles involved in concerned Mini projects &Summarizethe processes in various Industries.	K2
CO3	Solve the problems in concerned project works &alsoProduce excellent project report for both Institutional Training & Mini projects.	К3
CO4	Examine different types of problems, principles, Experimental techniques& applications of concerned project works.	K4
CO5	Design new machines, principles & applications for future generations& evaluate different issues related to Science & Technology.	K5
CO6	Invent new technology and use it in variour application	К6

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PO

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	9	9	9	9	9	9	9	
CO2	9	9	9	9	9	9	9	
CO3	9	9	9	9	9	9	9	
CO4	9	9	9	9	9	9	9	
CO5	9	9	9	9	3	3	3	
CO6	9	3	3	3	3	3	3	
Total Contribution of COs to POs	54	48	48	48	42	42	42	
Weighted Percentage of COs Contribution to POs	4.47	4.48	5.7	6.6	6.3	7.09	9.31	

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PO

Category	Course Type	Course Code	Course TitleContact HoursENVIRONMENTAL PHYSICS45		Credit		
III	Core : XVI	Open Elective			2		
Contact h	ours per wo	eek: 3					
Year	5	Semester	Internal Marks	Externa Marks		Total Marks	
First		III	25	75		100	
Pollution a	and Control	Fechniques.				nding the Environmental	
Cos	catement: After completion of the course, the learners will be able to constant King CO Statement Lee						
CO1			volved in Environ	mental Pollu	ition and	K1	
CO1 CO2	Pollution C outline the Technique	Control Techni basic Principl s & Conservat		llution Cont	rol	K1 K2	
	Pollution C outline the Technique energy res	Control Techni basic Principl s & Conservat ources	ques es involved in Po	llution Cont knon renewa	rol able		
CO2	Pollution C outline the Technique energy rese apply Polle	Control Techni basic Principl s & Conservat ources ution Control	ques es involved in Po ion of renewable &	llution Cont knon renewa	rol able	K2	
CO2 CO3	Pollution C outline the Technique energy rese apply Pollo Analysethe	Control Techni basic Principl s & Conservat ources ution Control 7 e different type	iques les involved in Po ion of renewable & Fechniques to redu	llution Cont Enon renewance pollution	rol able	K2 K3	

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	3	3	3
CO3	9	9	3	3	3	1	3
CO4	9	9	3	3	3	1	3
CO5	9	3	3	1	3	1	1

CO6	9	3	3	1	1	1	1
Total Contributio n of COs to POs	54	42	30	26	22	16	20
Weighted Percentage of COs Contributio n to POs	6.3	5.5	5.1	5.3	5.0	4.2	7.6

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

UNIT I

Introduction - Environmental pollution - Sources of pollution - types of pollutants - Carbon Monoxide, Nitrogen Oxides, Sulphurdioxide - Particulates - Toxic Chemicals in the Environment - Effects of pollution - Preventive Measures of pollution.

UNIT II

Types of pollution – Air Pollution, Causes and its effects – Water pollution, Causes and its Effects -Soil Pollution, Causes and its Effects, Thermal pollution, Causes and its effects, Noise pollution - Causes and its Effects.

UNIT III

Pollution Control Techniques - Solid Waste Management - Solid Waste Disposal - Solid Waste Ocean Dumping - Solid Waste Management by Bio Technology - Organic Waste Management by composting process.

UNIT IV

Waste Water Treatment – Water quality Parameters – Sludge Treatment – Reverse Osmosis – Water Reuse and Recycling - Domestic Water Treatment- Disinfection methods- UV Treatment and Ozonolysis. **UNIT V** (9 hours)

Natural Energy Sources – Renewable Energy Sources – Solar Energy, Natural gases, Wind Energy and Tidal Energy – Non Renewable Energy Sources – Coal, Minerals and Petroleum products. **Text Books :**

- 1. Environmental Chemistry (7thEdition by A.K. DE) New Age International Publishers.
- 2. Environmental Studies Published by Bharathiar University.
- 3.

Web Reference:

- 1. http://pdf.wri.org/environmentalpollution_bw.pdf
- 2. https://www.researchgate.net/publication/323944189 Environmental Pollution Causes and Cons equences A Study
- 3. https://www.slideshare.net/VivekJain68/waste-management-70027829
- 4. http://www.tezu.ernet.in/denvsc/IDC/Waste%20Management.ppt
- 5. https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=522265&Lab=NRMRL
- 6. <u>https://www.slideshare.net/pallabipriyadarsini25</u>/solid-waste-management-ppt

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
----------	----------------	----------------	--------------	------------------	--------

(9 hours)

(9 hours)

(9 hours)

(9 hours)

	Core : XVII Elective	23PHP16A	BIOMEDICA INSTRUME						
III	III				60	3			
Contact h	Contact hours per week: 4								
Year	Se	mester	Internal Marks	Externa Marks	1	Total Marks			
First		III	25	75		100			
	The aim is to instruments.	provide the	students, the work	king principle	es of medi	cal instruments and Physics			
CO Staten	CO Statement: After completion of the course, the learners will be able to								
Cos		С		Knowledge Level (RBT)					
CO1	recall ultrasonic resonance, Magnetic intensity, brain ,the K1 central nervous system,Transducer, and Doppler Ultrasound.								
CO2			ram, ENT and op sonance and Imag			K2			
CO3	apply the con ophthalmolo	1	typical laser syst	tem in		K3			
CO4	ultrasound te	chnology, ma	ECG waves, opth agnetic resonance IRI parameters.		,	K4			
CO5	evaluate the	techniques be	hind ultrasonogra Keratometer.	aphy, ultraso	und	K5			
CO6	modifythe characteristics of the normal ECG and transducer K6 design.								
K1 – Rem	Ū	Understand	K3 – Apply; K4	4 – Analyze;	K5 – Eva	aluate; K6 – Create			
	CO	-PO MAPPI	NG (COURSE A	ARTICULA	TION MA	ATRIX)			
CO – PO	Mapping								

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CO1	9	9	3	3	9	9	9		
CO2	9	9	9	1	9	9	9		
CO3	9	9	3	1	9	9	9		
CO4	9	9	1	1	9	9	9		
CO5	3	3	1	1	3	3	3		
CO6	3	3	1	1	3	3	3		
Total Contributio	42	42	18	08	42	42	42		

n of COs to							
POs							
Weighted							
Percentage							
of COs							
Contributio							
n to POs	3.33	3.04	6.08	4.61	3.18	2.60	3.33

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

UNIT I: ELECTROPHYSIOLOGICAL MEASUREMENTS (12 Hours)

Cell potential genesis – Nernst relation – cell in resting state – action potential from a cell – the resultant externally recorded action potential.

Electrocardiography(**ECG**): Electrocardiographic planes – Einthoven triangle – bi polar and uni-polar limb lead frontal plane ECG measurements – ECG leads – precordial leads – relationship between various leads – recording of ECG waves and measurements (block diagram).

(12 Hours)

UNIT II: ELECTROENCEPHALOGRAM

The brain and the central nervous system – the brain and its parts – cell potential and action – the characteristics of the normal ECG – the input electrodes – electrode construction and connections – EEG recording instruments (explanation with block diagram) – EEG wave analysis – a typical EEG machine specifications and requirements.

UNIT III: ENT AND OPHTHALMIC INSTRUMENTS (12 Hours)

Audiometry – Bekesy audiometer system – instruments used in opthamology - opthalmoscope – retinoscopy – Keratometer – intra ocular pressure – ultra sound in ophthalmology – components of a typical laser system in ophthalmology.

UNIT IV (12 Hours)

Ultrasonography – advantages – B scan – ultrasound scanning – ultrasonic system – probes for ultrasound – Doppler ultrasound (basic aspects) – transducer design – demodulation methods.

UNIT V: MAGNETIC RESONANCE AND IMAGING (MRI)(12 Hours)

Magnetic intensity – magnetic resonance phenomena – the magnets – magnetic relaxation and MRI parameters – pulse sequences.

Introduction to Industry 4.0- Need – Reason for adopting industry 4.0- Skills required for industry 4.0-Impact of industry

Text Books:

1. A Text book of Medical Instruments, S.Anandhi, 2005, New Age International (P) Ltd., Publishers, 1st Edition.(Units I-V)

Reference books:

- 1. Encyclopedia of medical devices and instrumentation, John G. Webster et.al, Wiley-Interscience, Second Edition.
- 2. **Medical Physics and Bio medical Engineering,** B. H. Brown et, al. Institute of Physics Publishing Bristol and Philadelphia.
- 3. **Design and Development of Medical Electronic Instrumentation**, David Prutchi, Michael Norris, Wiley Interscience.
- 4. **Bio medical instrumentation**, M. Arumugam, 2002, Anuradha Publications. [ISBN: 818772112X]

Web Reference:

- 1. <u>https://pdfroom.com/books/a-textbook-of-medical-instruments-s-ananthi-new-age-2005-ww/7jgkRPbmdMV</u>
- 2. https://iopscience.iop.org/article/10.1088/0967-3334/21/4/701
- 3. https://biblioseb.files.wordpress.com/2018/03/wiley-encyclopedia-of-medical-devices-and-

instrumentationvol-3.pdf

4. <u>https://www.researchgate.net/publication/3246222_Design_and_Development_of_Medical_Electr_onic_Instrumentation_Book_review</u>

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
III	Core : XVII Elective III	23PHP16B	THIN FILM PHYSICS AND CRYSTAL GROWTH	60	3

Contact hours per week: 4

Year	Semester	Semester Internal Marks		Total Marks
First	III	25	75	100

Preamble: The aim is to provide the students to gain knowledge and understanding the Environmental Pollution and ControlTechniques.

CO Statement: After completion of the course, the learners will be able to

Cos	CO Statement	Knowledge Level (RBT)
CO1	recall the nature of thin films, deposition and Growth Process of crystals	K1
CO2	explain the concepts of different Deposition techniques, stages of film growth and various characterization Techniques of crystals	K2
CO3	apply the required deposition technique of thin films and growth technique of crystals	К3
CO4	analyze the thickness of the film and the growth and structure of a crystal,	K4
CO5	evaluate the defects and impurities in films and crystals, deposition parameters and grain size of thin films, Growth Techniques of crystal	K5
CO6	Prepare a thin film, grow a crystal	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9

CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	3	3
CO4	9	9	9	3	3	1	1
CO5	9	3	3	3	3	1	1
CO6	9	3	3	3	3	1	1
Total Contributio n of COs to POs	54	42	42	36	36	24	24
Weighted Percentage of COs Contributio							
n to POs	3.33	3.04	6.08	4.61	3.18	2.60	3.33
Level of corre	lation: 0 –	No correla	tion: $1 - 1$	ow correla	tion: 3 – N	ledium cor	relation: 9- High

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

UNIT I: PREPARATION OF THIN FILM:

Nature of Thin Film-Deposition Technology-Distribution of Deposit-Resistance Heating- Thermal Evaporation-Flash Evaporation.

(12 Hours)

(12 Hours)

(12 Hours)

UNIT II: DEPOSITION TECHNIQUES

Electron Beam Method-Cathodic Sputtering-Glow Discharge Sputtering-Low Pressure Sputtering-Reactive Sputtering-RF Sputtering-Chemical Vapour Deposition-Chemical Deposition.

UNIT III: THIN FILM GROWTH PROCESS

Epitaxy-Thin Film Structure-Substrate Effect-Epitaxial Deposit - Film growth-five stages- Nucleation theories-Incorporation of defects and impurities in films Deposition parameters and grain size-structure of thin films.

FILM THICKNESS: Mass Methods-Optical Method-Photometry-ElliPOmetry-Interferometry-Other Methods- Substrate Cleaning.

UNIT IV: CRYSTALLIZATION PRINCIPLES AND GROWTH TECHNIQUES(12 Hours)

Solution growth-Low and high temperatures solution growth-Slow cooling and solvent evaporation methods-Constant temperature bath as a crystallizer. Principle of gel technique-Various types of gel - Structure and importance of gel-Methods of gel growth and advantages-Melt technique- Czochralski growth- Vapor-phase growth-Physical vapor deposition-Chemical vapor deposition.

UNIT V: CHARACTERIZATION TECHNIQUE(12 Hours)

X-ray Diffraction (XRD)-power and single crystal-Fourier transform infrared analysis-FT-Raman analysis-Elemental dispersive x-ray analysis (EDA–X)-scanning electron microscopy (SEM)-UV-VIS Spectrometer-Photo luminance (PL)

Introduction to Industry 4.0- Need – Reason for adopting industry 4.0- Skills required for industry 4.0- Impact of industry.

Text Books:

- 1. Thin Film Fundamentals, A. Goswami, 2008, New Age, New Delhi. (Units I III)
- 2. Elementary Crystal Growth, K. Sangawal, 1994, Shan Publisher, UK. (Unit IV)
- 3. Crystal Growth and Processes, P. SanthanaRagavan, P.Ramasamy, 2000, KRU Publications,

Kumbakonam. (Unit IV, V)

4. Crystal Growth Process, J. C. Brice, 1996, John Wiley Publications, New York.

Reference books:

- 1. Hand book of Thin Films Technology, L.I. Maissel and R. Clang, 1970, McGraw Hill.
- 2. Thin Films Process, J. L. Vossen and W. Kern, 1978, Academic Press.
- 3. The Materials Science of Thin Films, M. Ohring, 1992, Academic Press.
- 4. Instrumental Methods of Analysis, M. William and D. Steve, 1986, CBS publishers, New Delhi.
- 5. **Instrumental Methods of Analysis**, H.H. Williard, L.L. Merritt, M.J. Dean, and F.A. Settle, Sixth Edition, 1986, CBS Publishers and distributors, New Delhi.

Web Reference:

- 1. <u>https://books.google.co.in/books/about/Thin_Film_Fundamentals.html?id=K0e-8Nh9zSYC</u>
- 2. <u>http://www.issp.ac.ru/ebooks/books/open/Advanced_Topics_on_Crystal_Growth.pdf</u>
- 3. https://www.acadpubl.eu/hub/2018-119-12/articles/2/489.pdf
- 4. https://www.sathyabama.ac.in/sites/default/files/course-material/2020-10/SCY2.pdf
- 5. https://arshadnotes.files.wordpress.com/2018/02/the_materials_science_of_thin_films.pdf

Category	Course Type	Course C	Code	Course Title		Contac Hours	('redif
ш	Core : XVII Elective III	23PHP	216C	CLC COMP		60	3
111							
Contact h	ours per week	: 4					
Year	Sen	nester		nternal Marks	Externa Marks	Total Marks	
First		III		25	75		100
	This Paper en cloud computi				basics of Clo	oud comp	uting, virtualization,
CO Staten	nent: After con	npletion of	the co	ourse, the lea	rners will b	e able to	
Cos		(CO St	tatement			Knowledge Level (RBT)
CO1	Understand th	e basics of	Cloud	l Computing	,Working,	Benefits	K1
CO2	Explain the knowledge of cloud architecture and tools and K2 AWS						K2
CO3	Analyze the concepts of cloud computing Services and Security K3 and AWS						K3

CO4	Determine the virtualization and data storage in cloud	K4
CO5	Apply the Future Cloud in applications and AWS	K5
CO6	Discuss the applications of Cloud computing and AWS	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	9	9	9	9	9	9	9	
CO2	9	9	9	9	9	9	9	
CO3	9	9	9	9	9	3	3	
CO4	9	9	9	3	3	1	1	
CO5	9	3	3	3	3	1	1	
CO6	9	3	3	3	3	1	1	
Total Contributio n of COs to POs	54	42	42	36	36	24	24	
Weighted Percentage of COs Contributio	2.22	2.04	6.09	4 6 1	2 19	2.60	2.22	
n to POs	3.33	3.04	6.08	4.61	3.18	2.60	3.33	
Level of corre	ation: 0 -	No correla	ition; I – L	low correla	uon; 5 – N	ledium cor	relation; 9- High	

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

Do

SYLLABUS

UNIT I: Basics of Cloud Computing (12 Hours) Definition of cloud computing – on-premises, hybrid and cloud environment, on-demand delivery and cloud deployment – benefits of AWS global infrastructure, Availability zones, regions (AWS, CLI, management console and SDK). Cloud front and Edge locations, provisioning AWS services, well architectured framework – benefits of cloud computing

UNIT II:Compute in the cloud and networking(12 Hours)Elastic compute cloud, Instance types- EC2Auto scaling, Elastic load balancing, Networking privateand public, Virtual private gateway, virtual private network, AWS Direct Connect, DNS, CDN, hybriddeployments, VPC, SNS and SQS

UNIT III:Storage and Database(12 Hours)Definitions, Amazon EBS, S3, EFS, file and object storage, RDS, including Amazon Aurora, NOSQL

Database, dynamo DB, An	nazon DBMS, Additional database services,	,
UNIT IV:	Security	(12 Hours)
Shared responsibility mode	el, MFA, IAM security levels, security poli	cies, Bucket policies in S3, AWS
organizations. Compliance	with AWS, primary AWS security services	s,
UNIT V:	AWS	(12 Hours)
Monitoring , cloud watch,	cloud Trail AWS trusted advisor, Migration	n to cloud, AWS clouds adoption
framework, 6 key factors	of cloud migration, AWS data migration	services - AWS transfer family,
AWS snow family, AWS	data sync, AWS cloud (Migration service)	
Text Books:		
	"Cloud Computing – A Practical approach	for learning and
implementation", Pearson		
	J. Velte, Robert Elsenpeter, "Cloud Comp	uting: A Practical Approach",
McGraw Hill.		
-	Computing", Pearson Education, New Delh	ni, 2009.
Reference books:		
	umes Broberg, AndrzejGoscinski, " Clo	oud Computing Principles and
Paradigms", Wiley	& sons	
Web Reference:		
	.com/whitepapers/aws-overview.pdf	
-	<u>.com/getting_started/fundamentals_overviev</u>	x/

- https://aws.amazon.com/getting-started/fundamentals-overview/
 https://aws.amazon.com/products/compute/
 https://docs.aws.amazon.com/?nc2=h_ql_doc_do

Catego ry	Cours	se Type	Course Code	Course Title		Contac Hours	t Credit	
V	Profic: Enhan	iency cement	23PEHP P01	LASER AND ITS APPLICATIONS (SELF -STUDY)		-	2	
Contact	Contact hours per week: -							
Yea	r	Sei	nester	Internal Marks	External Marks		Total Marks	
Firs	t		III	-	100		100	
available lasers.	,itsappl	ications,	in medical a	students knowled m=nd industrial line the course, the lea	nes and train	n them to	es of lasers fabricate new models of	
Cos		CO Statement Knowledge Level (RBT)						
CO1	recal	ll the bas	asic terms involved in the lasers				K1	

CO2	Explain the fundamental properties and conditions of different	K2				
	lasers					
CO3	apply the laser applications in material processing	К3				
CO4	Analyze the different types of surface treatments, laser deposition of thin film, integrated circuit fabrication	K4				
CO5	Evaluate the needed method for the preparation of thin film.	K5				
CO6	Create a new technique for sample fabrications	K6				
K1 – Rer	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create					

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

co – i o mapping								
POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	9	9	9	9	9	3	3	
CO2	9	9	9	9	3	3	3	
CO3	9	9	9	3	3	3	3	
CO4	9	3	3	3	1	3	3	
CO5	3	3	3	1	1	3	3	
CO6	3	3	1	1	0	1	1	
Total Contributio n of COs to POs	42	36	34	26	17	16	16	
Weighted Percentage of COs Contributio n to POs	3.47	3.36	4.0	3.6	2.5	2.7	3.5	

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS UNIT I: FUNDAMENTALS OF LASERS

Electromagnetic radiation – energy levels – Interaction of radiation and matter – fluorescence, absorption, stimulated emission.

LASER MATERIALS: population inversion – optical pumping- excitation by electron collisions – resonant transfer of energy – resonant cavity.

UNIT II: PROPERTIES OF LASER LIGHT

Line width – collimation – spatial profiles of laser beams – temporal behavior of Laser output – Q switched operation – mode locked operation – cavity dumping – coherence – radiance – focusing

properties of Laser radiation – power.

UNIT III: GAS LASER

He-Ne Laser – ionized gas laser – Molecular Laser (CO2) — Solid state lasers: Neodymium YAG Lasers- glass Lasers- Ruby Lasers.

UNIT IV: SEMI CONDUCTOR LASER

semiconductor laser properties – Diode structures – diode doped solid state laser – Organic dye lasers – chemical lasers – X ray lasers – Tunable lasers.

UNIT V: APPLICATIONS

Interferometric distance measurement – velocity measurements – measurement of wire diameter – measurement of surface finish – particle diameter measurement – laser applications in material processing – laser welding – surface treatment – drilling, cutting and marking – laser deposition of thin film – integrated circuit fabrication.

Text Books:

- 1. Laser Systems and Application, V.K.Jain, 2013, Narosa Publisher. (All Units)
- 2. Laser and Non-Linear Optics, B.B.Laud, 2011, New age Int. publisher, 3rd Edition.

Reference books:

- 1. Semiconductor LasersI-Fundamentals, Edited by Eli Kapon, 1999, Academic press.
- 2. Solid state Lasers: A graduate text, Walter Koechner Michael Bass, 1937, Springer.
- 3. Laser & Optical Fibre Communications, P.sarah, 2008, I.K.Int publisher.
- 4. Laser Physics, S. Mohan, V. Arjunan, M. Selvarani, M. Kanjanamala, 2012, MJP Publishers.

Web Reference:

- 1. <u>https://spie.org/Documents/Courses/OP-</u> <u>TEC/Course 2 Laser Systems and Applications 2nd Edition 2016.pdf</u>
- 2. https://www.academia.edu/42707790/Lasers_and_Non_Linear_Optics_____
- 3. <u>http://www.ime.cas.cn/icac/learning/learning_3/201907/P020190717575056933547.pdf</u>
- 4. <u>https://mrcet.com/downloads/digital_notes/ECE/III%20Year/FIBER%20OPTICAL%20COMM</u> <u>UNICATIONS.pdf</u>
- 5. https://ehs.msu.edu/_assets/docs/laser/laser-fundamentals-pt1-springer-2005.pdf

Category	Course Type	Course Code	Course T	Course Title		Credit			
III	Core : XVIII	23PHP17	CONDENSED MATTER PHYSICS		90	4			
Contact hours per week: 6									
Year	YearSemesterInternal MarksExternal MarksTotal Marks								
First	First IV 25 75 100								
Preamble: The aim is to provide students knowledge and understanding the Crystal structure and crystal defects and to advance skills for analyzing Heat capacity of the electron gas and Magnetism									

CO Statement: After completion of the course, the learners will be able to						
Cos	CO Statement	Knowledge Level (RBT)				
CO1	remember the Crystal, lattice, Reciprocal lattice, Defects, Hall effect, Semiconductors, Superconductor and magnetic materials.	K1				
CO2	Describe the concept of Reciprocal, various defects and different types of materials.	K2				
CO3	calculate the reciprocal value of BCC and FCC thermal conductivity of metals by suitable methods.	К3				
CO4	analyze various various theories in Semiconductor, Dielectric, Superconductor and magnetic materials	K4				
CO5	classify the defects and dislocations in crystals and identify the defects by various methods.	K5				
CO6	create new types of semiconductor, Superconductor and magnetic materials	K6				

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	9	9	9	9	3	3	3	
CO2	9	9	9	9	3	3	3	
CO3	9	9	9	9	3	3	3	
CO4	9	9	9	3	3	3	3	
CO5	9	9	3	3	1	1	1	
CO6	9	3	3	3	9	9	3	
Total Contributio n of COs to POs	54	48	42	36	22	22	16	
Weighted Percentage of COs Contributio n to POs	6.37	6.38	7.22	7.37	5.05	5.82	6.13	
Level of correlation: 0 – No correlation;1 – Low correlation;3 – Medium correlation;9- High correlation between COs and POs								
SYLLABUS UNIT I: RECIPROCAL LATTICES (18 Hours) Vector development of reciprocal lattice – Properties of the reciprocal lattice – Reciprocal lattice to bcc								

lattice and fcc lattice.

UNIT II: CRYSTAL DEFECTS (18 Hours)

Classification of defects - Points defect - The Schottky defect - The Frenkel defect -colour centers - F center - other colour centers - Production of colour centers by X rays and practice irradiation – Defect and energy state.Dislocations - Slip and plastic deformation - Shear strength of single crystals - Edge dislocation - Screw dislocation - Stress field around an edge dislocation.

UNIT III :LATTICE VIBRATIONS, SEMICONDUCTORS & FREE ELECTRON THEORY(18 Hours)

Vibrations of One Dimensional Diatomic Linear Lattice -Acoustic and Optical Branches Phonon State-Energy levels and density of orbitals – Motion in magnetic fields – Hall effect – Thermal conductivity of metals – Nearly free electron model –Electron in a periodic potential – Semiconductors – Band gap – Effective mass – Intrinsic carrier concentration.

UNIT IV: DIELECTRICS, FERROELECTRICS AND SUPERCONDUCTIVITY (18 Hours)

Macroscopic electric field – Local electrical field at an atom –Polarizability – Clausius- Mossotti equation – Ferroelectric crystals – Polarization Catastrophe – Ferroelectric domains.Occurrence of Superconductivity – Meissner effect – Thermodynamics of Superconducting transition – London equation – Coherence length – BCS theory – Flux Quantization – Type-I and Type-II Superconductors –Josephson tunneling effect- DC and AC Josephson effect – SQUID.

UNIT V: MAGNETISM (18 Hours)

Quantum theory of Paramagnetism – Paramagnetic susceptibility of conduction electrons – Hund's rules- Kondo effect. Ferroelectric order – Curie point and the exchange integral – Temperature dependence of saturation magnetization – Magnons – Thermal excitation – Ferromagnetic order – Antiferromagnetic order – Antiferromagnetic Magnons – Ferromagnetic domains – Origin of domains – Coercive force and hysteresis.

Text Books:

- 1. Introduction to Solid State Physics, Kittel. C. 2005, 8th Edition, Willey India (P) Ltd., New Delhi.(Units III, IV & V)
- 2. **Fundamentals of Solid State Physics**, Saxena. B.S., R. C. Gupta and P. N. Saxena, 2012, 16th edition, PragatiPrakashan, Meerut.(Units I & IV)
- 3. Solid State Physics, S. L. Guptha, V. Kumar, Ninth Edition, K. Nath& Co, Meerut.[ISBN:978-81-924088-7-3]

Reference books:

- 1. Solid State Physics, A.J. Dekkar, revised edition, 2000, Macmillan India Ltd., New Delhi.
- 2. **Principles of Solid State, Keer.** H.V. 1st edition, 2002, New age international, New Delhi.
- 3. Solid State Physics, Pillai S.O., 2005, 4th Edition, New Age International Publishers Ltd.

Web Reference:

- $1. \ \underline{https://www.wiley.com/en-us/Introduction+to+Solid+State+Physics\%2C+8th+Edition-p-9780471415268}$
- 2. https://www.researchgate.net/publication/307976662 Fundamentals of Solid State Phy

3. http		/chem/wp-con	tent/unloade	·/2018/10/P	G-Cour	se Book-20)16 pdf			
Category	Course Type	Course Code		ourse Title	<u>d-cour</u>	Contact Hours	Credit			
III	Core : XIX	23PHP18	AND S	IODYNAN TATISTIC CHANICS	AL	90	4			
Contact he	Contact hours per week: 6									
Year	ł	Total Marks								
First		IV	25		75		100			
		to provide stud			ge and u	inderstandi	ng of			
CO Staten	nent: After	completion of	the course,	the learners	will be	able to				
Cos			CO Statem	ent			Knowledge Level (RBT)			
CO1	recall the la Mechanics	aws and princip	ples in Ther	modynamic	es and S	tatistical	K1			
CO2	explain the and quantu	classical	K2							
CO3	apply princ	ciples to explai			, Gibbs _]	paradox	K3			
CO4	and Phase transition CO4 categorize different type of statistics based on application									
CO5		opriate statistic			-		K5			
CO6		proper statistic					K6			
K1 – Rem			; K3 – App	ly; K4 – A	nalyze;	K5 – Evalı	uate; K6 – Create			
	CO	PO MAPPIN	G (COURS	SE ARTICU	U LATI	ON MATR	IX)			
CO – PO I	Mapping									
POs Cos	POI	PO2	PO3	PO4	POS	5 POe	6 PO7			
CO1	9	9	9	9	0	0	0			
CO2	9	9	9	9	3	0	0			
CO3	9	3	9							
CO4	9	1	9	1	1	3	9			
CO5	1	1	9	1	0	3	3			
CO6	1	1	9	1	0	3	0			

Total Contributio n of COs to POs	38	30	45	30	7	12	21
Weighted	4.48	3.98	7.74	6.14	1.60	3.17	8.04
Percentage							
of COs							
Contributio							
n to POs							
Level of correlation:0 – No correlation;1 – Low correlation;3 – Medium correlation;9- High							
correlation be	tween COs	and POs					_

SYLLABUS

UNIT I: Thermodynamics and Radiation

Second law of thermodynamics- Entropy and Second law of thermodynamics- Entropy and Disorder-Thermodynamic Potential and Reciprocity relation- Thermodynamic Equilibria- Chemical Potential-Blackbody radiation- Planck's Radiation law.

UNIT II: BASIC CONCEPTS OF STATISTICAL PHYSICS (18 Hours)

Phase space- Concept of ensemble- Micro canonical ensemble-Canonical ensemble- Grand Canonical ensemble- Density distribution in phase space- Liouvilles theorem- Postulate of equal apriori probability- Statistical equilibrium- Thermal equilibrium- Mechanical equilibrium-Particle equilibrium-Connection between Statistical and thermodynamic quantities.

UNIT III: CLASSICAL DISTRIBUTION LAW (18 Hours)

Microstates and Macro states-Classical Maxwell-Boltzmann distribution law- Evaluation of constants, α and β - Maxwell's law of Distribution of velocities- Principle of equi-partition of energy-Gibbs paradox- Partition function and its correlation with thermodynamics quantities.

UNIT IV:QUANTUM STATISTICS (18 Hours)

Indistinguishability and quantum statistics- Statistical weight and apriori probability- Identical particle's and symmetry requirements- Bose Einstein's Statistics- Fermi Dirac Statistics- Results of three statistics- Thermodynamic interpretation of parameter's α and β - Blackbody radiation and Planck radiation- Specific heat of solids: Dulong and Petit's law- Einstein's Theory- Debye theory.

Unit V: APPLICATION OF QUANTUM STATISTICS

Energy and pressure of ideal Bose Einstein gas- Bose Einstein condensation- Liquid helium- Energy and pressure of ideal Fermi Dirac gas- Free electron model and electronic emission- Onsager relations- Fluctuation in Energy, Pressure, Volume & Enthalpy- Using model-Bragg William Approximation- Using One dimensional model.

Text Books:

1. **Statistical mechanics,** Gupta & Kumar, 2003, Pragatiprakashan, Meerut. (All Units) **Reference books:**

1. **Elements of Statistical Mechanics**, Miss Kamal Singh, S.P.Singh, 1999, S.Chand& Company Ltd

Web Reference:

- 1. <u>https://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/</u>
- 2. https://core.ac.uk/download/pdf/44144078.pdf
- 3. https://cds.cern.ch/record/988948/files/0521841984_TOC.pdf

(18 Hours)

(18 Hours)

4. <u>http://www0.unsl.edu.ar/~cornette/ME/An-Introduction-to-Statistical-Mechanics-and-Thermodynamics.pdf</u>

Category	Course Type	Course Code	Course Title Contact Hours			Credit	
III	Core : XX	23PHP19	ELECTRONIC COMMUNICATION SYSTEMS		90		4
Contact h	ours per w	eek: 6					
Year	YearSemesterInternalExternalMarksMarksMarks					Total Marks	
First		III	25	75			100
microwave CO Staten Cos		•	the course, the lea	arners will b	e able to)	Knowledge Level (RBT)
CO1	-	propagation an d Optical fibre	d properties of lig	ht, Antenna	s,		K1
CO2	discuss the	-	nna, the microway lation	e generator	s, Radar	,	K2
CO3						ł	K3
CO4							K4

	Klystron, Magnetron, Travelling Wave Tubes, MASER, and	
	Optical Fibre Propagation	
CO5	evaluate the Grounded Antenna, Ungrounded $\lambda/2$ Antenna, and	K5
	Mathematical representation of FM, Step and Graded Index	
	Fibres, Fibre Losses and Dispersion	
CO6	predict the rule for reducing Noise and Signal Loss in Antenna	K6
	transmission	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	3

CO5	9	9	3	1	1	1	3
CO6	9	9	3	1	1	1	1
Total Contributio n of COs to Pos	54	54	42	32	32	26	22
Weighted Percentage of COs Contributio n to POs	6.37	7.18	7.22	6.55	7.35	6.87	8.42

9

3

9

3

3

3

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS UNIT I: ANTENNAS & WAVE PROPAGATION

9

9

CO3

CO4

9

9

9

9

(18 Hours) Terms and Definition -Effect of Ground on Antenna-Grounded $\lambda/4$ Antenna Ungrounded $\lambda/2$ Antenna Antenna Arrays-Broadside and End Side Arrays-Antenna Gain-Directional High Frequency Antennas-Sky Wave Propagation-Ionosphere-Ground Wave Propagation

UNIT II: MICROWAVES

Microwave Generation-Multicavity Klystron -Reflex Klystron-Magnetron-Travelling Wave Tubes (TWT) -MASER.

UNIT III: RADAR SYSTEM

Elements of a Radar System-Radar Equation-Radar Performance Factors-Radar Transmitting Systems-Radar Antennas-Duplexers-Radar Receivers and Indicators-Pulsed Systems-Other Radar Systems

UNIT IV: COMMUNICATION ELECTRONICS

Analog and Digital Signals -- Modulation -- Types of Modulation-Amplitude modulation theory --Frequency spectrum of the AM wave -Representation of AM -Power relations in the AM wave -Generation of AM -Basic requirements-Description of frequency and phase modulation -Mathematical representation of FM –Frequency spectrum of the FM wave -Effects of noise on carrier.

UNIT V: OPTICAL FIBRES

Propagation of Light in an Optical Fibre-Acceptance Angle-Numerical Aperture-Step and Graded Index Fibres-Optical Fibre as a Cylindrical Wave Guide-Wave Guide Equations-Wave Equations in Step Index Fibres-Fibre Losses and Dispersion-Applications.

Text Books:

1. Electronic Communication System, George Kennedy & Davis, 1989, Tata McGraw Hill 4th

3

3

(18 Hours)

(18 Hours)

(18 Hours)

(18 Hours)

edition.[ISBN:978-0-07-107782-8] (Units I - IV)

1. Optical fiber and fiber optic communication systems, S. K. Sarkar, 2007, S. Chand Publication. (Unit - V)

References books:

2. Electronic Communications, Sanjeeva Gupta, 2002, Khanna Publishers.

Web References:

- 1. <u>https://soaneemrana.org/onewebmedia/ELECTRONICS%20COMMUNICATION%20SYSTE</u> <u>M%20BY%20GEORGE%20KENNEDY.pdf</u>
- 2. <u>https://mrcet.com/downloads/digital_notes/ECE/III%20Year/FIBER%20OPTICAL%20COM</u> <u>MUNICATIONS.pdf</u>

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
III	Core : XXI	23PHP20	ADVANCED PHYSICS PRACTICAL-II	135	4

Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
First	III & IV	40	60	100

Preamble: The aim is to provide the students better practical knowledge of general Physics experiments, learn about handling of experiments and to know about different equipments used.

CO Statement: After completion of the course, the learners will be able to

Cos	CO Statement	Knowledge Level (RBT)
CO1	remember the formulae and properties for different experiments	K1
CO2	be aware of principles and characteristics of various experiments	K2
CO3	seek different applying conditions and procedure in each experiment	К3
CO4	explore the causes for each experiments and relationship between different formulae	K4
CO5	assess and compare the effectiveness of each experiment	K5
CO6	develop new innovation on the basis of existing experiment	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO- PO MAPPING (COURSE ARTICULATION MATRIX)

POCOs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	9	9	9	9	9	9	3

						1	
CO2	9	9	9	9	9	9	3
CO3	9	9	3	3	9	9	1
CO4	9	9	3	3	3	3	1
CO5	9	9	3	3	3	3	1
CO6	3	3	0	3	0	3	0
Total Contribu n of COs Pos		48	27	30	33	36	9
Weighte Percenta of COs Contribu n to PO	ge tio	6.38	4.64	6.14	7.58	9.5	3.44
	orrelation: 0 – n between COs		tion; 1 – L	ow correla	tion; 3 – N	Iediun	o correlation; 9- High
			SY	LLABUS			
S.No		С	ourse Con	tent			Instructional Hours
1	e/m-Magnetro	on Method					
2	Compressibili	ty of a Liqu	id-Ultraso	nic Method			
3	Arc Spectra-C Brass	Constant De	viation Spe	ctrograph-(Copper, Iro	n &	
4	Michelson Int	erferometer	·- λ, dλ and	Thickness	of Mica Sh	eet	
5	Susceptibility						
6	Hall Effect an	d its applica	ation				
7	e/m-Zeeman I	135					
8	B-H Curve-So						
9	B-H Curve-A						
10	Double Slit-W	/avelength]					
11	G.M Counter-	Characteris					
12	Kelvin''s Dou	ble Bridge-	Determinat	ion of Very	7		
13	LowResistanc He-Ne Las	e& Temper ser determin		ficient of R	esistance		

14	Matlab Programming-Radioactive Decay	
15	Matlab Programming-Numerical Integration	
16	Matlab Programming-Double Integration	
17	Matlab Programming-Solution of Ordinary Differential Equations	
18	Matlab Programming-Computer Simulation of Equations of Motion for a System of Particles	
19	Matlab Programming-Computer Simulation of 1-D and 2-D Lattice Vibrations	
20	Matlab Programming-Computer Simulation of Kronig-Penney Model	
21	Matlab Programming-Numerical simulation of Wave- Functions of Simple Harmonic Oscillator	
22	Matlab Programming-Simulation of Wave Functions for a Particle in Critical Box	
23	Matlab Programming-Solution of Diffusion Equation	

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
III	Core : XXII	23PHP21	GENERAL ELECTRONICS PRACTICAL-II	135	4

Contact hours per week: 5

Year	Semester	Internal External Marks Marks		Total Marks	
First	III & IV	40	60	100	

Preamble: The aim of this course is to provideknowledge on the applications of Operational amplifier and to gain the practical hands on experience of programming the microprocessor and also gain knowledge on interfacing of different peripherals to microprocessor

CO Statement: After completion of the course, the learners will be able to

Cos	CO Statement	Knowledge Level (RBT)
CO1	recall the working principle of Operational Amplifier, IC 555 and microprocessor	K1
CO2	elucidate the functioning of circuits constructed using operational amplifier and IC 555	К2
CO3	perform analog to digital conversion and digital to analog conversion using operational amplifier perform interfacing for waveform generator, stepper motor, 7 segment LED display Hex keyboard musical tone generator using microprocessor	К3

CO4	analyze the mathematical operations performed by circuits	K4
	constructed using operational amplifier	
CO5	determine the frequency of astablemultivibrator and output	K5
	voltage in simultaneous adder and subtractor	
	execute programs using microprocessor	
CO6	construct the circuits to perform mathematical operations,	K6
	measurement of temperature and light intensity using	
	operational amplifier	
174 D		

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

	mapping								
POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CO1	9	9	9	9	9	9	3		
CO2	9	9	9	9	9	9	3		
CO3	9	9	3	3	9	9	1		
CO4	9	9	3	3	3	3	1		
CO5	9	9	3	3	3	3	1		
CO6	3	3	0	3	0	3	0		
Total Contribu n of COs POs	/18	48	27	30	33	36	9		
Weighte Percenta of COs Contribu n to PO Level of c	ge tio s	6.38 No correla	4.64 tion; 1 – L	6.14 ow correla	7.58 tion; 3 – N	9.52	3.44 correlation; 9- High		
	n between CO		,	LLABUS	,		, 8		
	EXAN	ANY 1 AINATION	ΓΕΝ(10) E	XPERIME			TER		
S.No	Course Content						Instructional Hours		
1	Op-Amp: Sim								
2	Op-Amp: V te		135						
3	Op-Amp: Cire Value, Cli	cuits Using ipper, Clam		lf Wave, Fu	ıll Wave, P	eak			

4	Op-Amp: Log and Antilog Amplifier	
5	Op-Amp Comparator-Zero Crossing Detector, Window Detector, Time Marker	
6	Op-Amp: Instrumentation Amplifier-Temperature Measurement	
7	Op-Amp: Instrumentation Amplifier-Light Intensity-Inverse Square Law	
8	IC 555 Timer Application-Monostable, Linear & Astable	
9	A/D Converters-Any One Method	
10	D/A Converters-Binary Weighted Method	
11	Microprocessor: LED Interfacing	
12	Microprocessor: Stepper Motor Interfacing	
13	Microprocessor: Traffic Control Simulation	
14	Microprocessor: ADC Interface-Wave Form Generation	
15	Microprocessor: Hex Keyboard Interfacing	
16	Microprocessor: Musical Tone Generator Interface	
25	MATLAB Programming-Mean, Median & Standard Deviation	
26	MATLAB Programming-Curve Fitting & Interpolation	
27	MATLAB Programming-Matrix Summation, Subtraction and Multiplication	
28	MATLAB Programming-Matrix Inversion and Solution of Simultaneous Equations	
29	He-Ne Laser – Measurement of refractive index of liquids.	
30	He-Ne Laser – Power distribution measurement.	
31	He-Ne Laser – Thickness of Wire	

Category	Course Type	Course Code	Course Title		Contact Hours	Credit
III	Core : XXIII	23PHP22	PROJECT WORK & VIVA VOCE		50	3
Contact hours per week: 2						
Year	Se	emester	Internal Marks	Externa Marks		Total Marks

2022	III	20	80	100				
Preamble: The aim is to provide the student to acquire knowledge on synthesis, fabrication								

ind evaluation on basis of day to day life scenario and to understand the Importance of undergone project.

CO Statement: After completion of the course, the learners will be able to

Cos	CO Statement	Knowledge Level (RBT)
CO1	remember the facts about concerned project and its availability in environment	K1
CO2	be aware of principles that are interconnected to their individual project like material science, thin films, solar cells	K2
CO3	seek different applying technique and create innovative ideas on basis of project studies	К3
CO4	explore the causes and reason behind applied techniques of the project	K4
CO5	evaluate the results made from the project and analyse the usage of project in daily life	K5
CO6	develop further more innovations in the existing project based on innovative ideas	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Map	CO – PO Mapping									
POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7			
CO1	9	9	9	9	9	3	9			
CO2	9	9	9	9	3	3	3			
CO3	9	9	9	9	3	3	3			
CO4	9	9	3	9	3	3	1			
CO5	9	3	1	3	1	3	1			
CO6	3	3	1	3	1	1	1			
Total Contribution of COs to POs	48	42	32	42	20	16	18			
Weighted Percentage of COs Contribution to Pos	3.97	3.92	3.8	5.8	3.0	2.70	3.99			
Level of correl	ation: 0 – N	No correla	tion; 1 – L	ow correla	tion; 3 – M	ledium cor	relation; 9- High			

correlation between COs and POs

Value-added Courses: **(i)**

Course Code	Course Name	Category	L	Т	Р	Credit
23PHVAP1	MATERIAL SCIENCE	Value added	-	40	-	-
Preamble						

Р

UNIT I

The aim of the objectives is to provide basic knowledge and skill of Material Science.

SYLLABUS

(10 Hours)

Material Science-Properties of Engineering Material-Selection of Materials for Engineering Applications.

UNIT II: MAGNETIC MATERIALS(10 Hours)

Different types of Magnetic Materials –Diamagnetism and Paramagnetism – Ferromagnetism – Domain theory of ferromagnetism - Hard and Soft magnetic materials.

UNIT III : MODERN ENGINEERING MATERIALS(10 Hours)

Polymer - Ceramics - Super Strong Materials - Cermets- High temperature materials-Thermoelectric Materials- Electrets- Nuclear Engineering materials.

UNIT IV : NEW MATERIALS (10 Hours)

Metallic glasses – Fiber reinforced plastics – Metal matrix composites – Optical Materials– Materials for optical sources and detectors- Fiber Optic materials and their applications.

UNIT V

(10 Hours)

Display Materials – Acoustic Materials and their applications– SAW materials– Biomaterials. **Text Books**

1. Materials science- M Arumugam, Anuradha agencies.

References Books

1. Materials Science and Engineering - V. Raghavan, Prentice Hall of India,

Course Code	Course Name	Category	L	Τ	Р	Credit		
23PHVAP2	PROBLEM SOLVING FOR NET/SLET	Value added	-	40	-	-		
Preamble The aim of the objectives is to provide basic skills to solve Problems on Physics.								
SYLLABUS								

VECTOR CALCULUS

(10 Hours)

Product of vectors - Gradient - Divergence & Curl - Integration of vectors: Linear integration of vectors, Surface integration of vectors, Volume integration of vectors, Linear dependency of

vectors, Orthogonal curvilinear co-ordinates.

UNIT II

MATRICES (08 Hours)

Eigen values & Eigen vectors – Cayley-Hamilton theorem – Rank of a matrix – Diagonalisation of a matrix – Linear transformation – Applications.

UNIT III

COMPLEX ANALYSIS(08 Hours)

Function of complex variables – Complex analytic function – Power series: Expansion of Complex function – Singularity of Complex function – Residue of a Complex function.

UNIT IV

DIFFERENTIAL EQUATIONS(08 Hours)

Differential equation of first order and first degree – Linear second order differential equation – Legendre differential equation – Bessel differential equation – Hermite differential equation – Lagauerre differential equation.

UNIT V

TENSOR ANALYSIS(08 Hours)

Basic review of tensors – Algebra of tensors – Fundamental tensors – Chrystoffel symbols – Covariant, contra-variant and mixed tensors.

Text Books

- 1) Mathematical Physics (revised), H K Dass, S. Chand (2008), ISBN 8121914698, 9788121914697.
- 2) Mathematical Physics(revised), SatyaPrakash, Sultan Chand & Sons (2014), ISBN 8180549283, 978-8180549281

References Books

- 1) Mathematical Physics, Kalkani S.L 3rd Edition 2009, ISBN 9789386478238.
- 2) Mathematical Physics, B.D Gupta- Vikas publishing house-4th Edition 2009, ISBN 8125930965, 9788125930969.
- 3) Mathematical Physics, Rajput B.S. Pragatiprakashan -23rd Edition-2011

E-Reference:

1. <u>https://nptel.ac.in>courses</u>

c) Extra Credit Course(s):

Courses offered by the department for ADVANCED LEARNERS

Course Code	Course Name	Category	L	Τ	Р	Credit			
	ADVANCED INSTRUMENTATION	Core							
Course Objective: By undergoing the Statistical Mechanics, one should be able to acquire deeper knowledge on Statistical Mechanics									

SYLLABUS

ERRORS AND MEASUREMENTS

Measurement, Instruments-static characteristics of instruments, estimation of static errors and reliability, dynamic characteristics of instruments.

UNIT II **TRANSDUCERS**

UNIT I

Classifications of transducers-displacement measurement, strain measurement-stress strain relations, resistance strain gauges, Fibre – Optic strain gauges.

UNIT III

PRESSURE MEASUREMENTS

Definition- Pressure units and their conversions, comparison with known dead weights, Force-Summing devices, secondary transducers, vacuummeasurement.

UNIT IV

TEMPERATURE MEASUREMENTS

Temperature scale, change in dimensions, electrical properties, thermoelectricity, fibre-optic sensors, Quartz thermometer, change in velocity of sound propagation, radiation pyrometers, thermowells.

UNIT V

OTHER FORMS OF MEASUREMENTS

Acceleration and force measurement, Tachometers, Torque measurement, flow measurement, level measurement, signal conditioning, display devices and recordingsystems

Text Books

1. Introduction to Measurements and Instrumentation – Arun K Gosh, 4th Edition, 2012, PHI Learning Private Limited (Unit 1, 2, 3, 4 & 5)

Course Code	Course Name	Category	L	Τ	Р	Credit
	ADVANCED QUANTUM MECHANICS	Core				

Course Objective: The aim is to make the students to understand the concepts of wave mechanics, Schrödinger equation, 1D and 3D energy eigen value problems, symmetry and conservation laws and approximation methods and theories for the study of chemical bondings.

UNIT I

SYLLABUS

Wave Mechanical concepts: Wave nature of particles – the uncertainty principle – the principle of superposition - wave packet - time-dependent schrodinger equation - interpretation of wave function - ehrenfest's theorem - time-independent schrodingerequation - stationary states admissibility conditions of the wave function.

Unit II

One Dimensional Energy Eigen Value Problems: Square well potential with rigid walls - Square well potential with finite walls – square potential barrier – Alpha emission – Bloch waves in periodic potential - Kronig-Penney square-well periodic potential - linear harmonic oscillator:

(10 Hours)

(10 Hours)

(10 Hours)

(10 Hours)

(10 Hours)

(10 Hours)

(10 Hours)

Schrodinger method and operator method.

Unit III

Three Dimensional Energy Eigen Value Problems: Particle moving in a spherically symmetric potential – system of two interacting particles – rigid rotator – hydrogen atom – hydrogenic orbits – the free particle – three-dimensional square-well potential – the deuteron.

Unit IV

(10 Hours)

Symmetry and Conservation laws: Symmetry transformations- Translation in space: conservation of linear momentum - Translation in time: conservation of energy - Rotation in space: conservation of angular momentum – space inversion: parity conservation – time reversal.

Unit V

(10 Hours)

Chemical bonding:Born-Oppenheimer approximation – Molecular orbital method – MO treatment of hydrogen molecule ion - Electronic configuration of diatomic molecules - Valence bond method the valence bond treatment of H₂.

Text Books

- 1. Quantum Mechanics, G. Aruldhas, 2nd Edition, 2009, PHI Learning. (All units)
- 2. Advanced Quantum Mechanics, SatyaPrakash, 2001, KedarNath Ram Nath Co., Meerut. **Reference Books**
 - 1. Quantum Mechanics, Leonard I. Schiff, 1968, McGraw-Hill Book Company.
 - 2. Quantum Mechanics, V. Devanathan, 2005, Narosa Publishing House, New Delhi.
 - 3. A textbook of Quantum Mechanics, P.M. Mathews and Venkatesan, 27th reprint 2002, Tata McGraw Hill publishing company Ltd., New Delhi.

Course Code	Course Name	Category	L	Т	Р	Credit
	STATISTICAL MECHANICS	Core				

Course Objective:By undergoing the Statistical Mechanics, one should be able to acquire deeper knowledge on Statistical Mechanics

SYLLABUS

(10 Hours)

THE FUNDAMENTALS OF STATISTICAL PHYSICS

Objective of statistical mechanics: macrostates, microstates, phase space and ensembles- Density of states- Density distribution in phase space- Ergodic hypothesis- Postulate of equal a priori probability and equality of ensemble average and time average- Boltzmann's postulate of entropy-Classical ideal gas- Entropy of ideal gas: Gibbs' paradox- Liouville's theorem. (10 Hours)

UNIT II

UNIT I

THEORY OF ENSEMBLES

Classification of ensembles- Micro canonical, Canonical and Grand canonical ensembles - Partition function of canonical ensemble- Thermo dynamical quantities by partition function - expression of entropy- Helmholtz free energy- fluctuation of internal energy- chemical potential of ideal gas. UNIT III (10 Hours)

OUANTUM STATISTICS

Introduction- Postulates of quantum statistical mechanics- Density matrix- Ensembles in Quantum statistical mechanics- Quantum Liouville theorem- Maxwell law of distribution of velocities- Ideal

(10 Hours)

quantum gases- Bosons- Fermions- BE, FD, MB distributions using GCE partition functions. UNIT IV (10 Hours)

APPROXIMATE METHODS

Classical Cluster expansion- Quantum Cluster expansion- Virial equations of states, Ising model in one, two, three dimensions- exact solutions

UNIT V

(10 Hours)

PHASE TRANSITIONS

Photon gas- Equation of state- Bose-Einstein condensation- Equation of state of ideal gas - Specific heat from lattice vibration- phase transitions- first and second order phase transitions critical points-Landau's theory- Phonon gas- Theory of Super fluidity- Liquid helium.

Text Books

1. B.B. Laud, Fundamentals of Statistical Mechanics, New Age International Publishers.

2. Kerson Huang, Statistical Mechanics, John Wiley & Sons.

3. C. Kittel, Elementary Statistical Physics, John Wiley & Sons.

4. R.P. Feynman, Statistical Mechanics, Addison Wesley.

5. R.K. Pathria, Statistical Physics, Pergamon, Oxford.

6. F. Reif, Statistical and Thermal Physics, McGraw Hill.

Course Code	Course Name	Category	L	Τ	Р	Credit		
	PLASMA PHYSICS							

Course Objective: The aim is to provide the students, understand the model plasma phenomena in the universe and explore the physical processes which occur in the space environment.

SYLLABUS

(10 Hours)

FUNDAMENTAL CONCEPTS ABOUT PLASMA

Kinetic pressure in a partially ionized - mean free path and collision cross section- mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons - Thermal conductivity - Effect of magnetic field - Quasi neutrality of plasma - Debye shielding distance.

UNIT II

UNIT I

(10 Hours) MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD

Particle description of plasma - Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field - Motion of charged particle in electric and magnetic fields - Motion of charged particle in inhomogeneous magnetic field- Motion of charged particle in magnetic mirror confinement - motion of an electron in a time varying electric field

UNIT III

PLASMA OSCILLATIONS AND WAVES

Introduction, theory of simple oscillations - electron oscillation in a plasma - Derivations of plasma oscillations by using Maxwell's equation - Ion oscillation and waves in a magnetic field - thermal effects on plasma oscillations - Landau damping - Hydro magnetic waves -Oscillations in an electron beam

UNIT IV

PLASMA DIAGNOSTICS TECHNIQUES

Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic method - laser as a

(10 Hours)

(10 Hours)

tool for plasma diagnostics – X ray diagnostics of plasma - acoustic method – conclusion

UNIT V

APPLICATIONS OF PLASMA PHYSICS

(10 Hours)

Magneto hydrodynamic Generator - Basic theory - Principle of Working - Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma

Text Books

- 1. Plasma Physics Plasma State of Matter S.N. Sen, PragatiPrakashan, Meerut
- 2. Principles of Plasma Diagnostics I. H. Hutchinson
- 3. Introduction to Plasma Physics F.F.Chen, Plenum Press, London
- 4. Plasma Diagnostic Techniques R.H. Huddlestone & S.L. Leonard