P.K.R. ARTS COLLEGE FOR WOMEN (AUTONOMOUS),

(Accredited with 'A' grade by NAAC - Affiliated to Bharathiar University, Coimbatore)

GOBICHETTIPALAYAM - 638 476

DEPARTMENT OF PHYSICS MASTER OF SCIENCE

SYLLABUS

For the candidates admitted from the Academic Year 2020-2021 and onwards

Under CBCS PATTERN

PG COURSE STRUCTURE CBCS – 2020-2021

Parts	No. of Courses	Credit(s) / Course	Total Credits	Proposed Semester						
Part - III :Core Courses										
(Core / Comprehension/ Institutional Training/ Project)	26	4/1/2/3	89	I - IV						
Part – IV : Ability Enhancement Course/ Open Elective :										
i. Cyber Security	1	2	5	II						
ii. Concepts of Electrical Appliances	1	3	3	III						
Part - V : Proficien	cy Enhancem	ent :								
i. Laser and its applications - Self study	1	2								
ii. Online Course / Learning Object Repository	1	2	6	I to IV						
iii. Certificate Course	1	2								

Total: 3000 Marks & 100 Credits

P.K.R ARTS COLLEGE FOR WOMEN (An Autonomous Institution, accredited by NAAC with 'A' Grade) MASTER OF SCIENCE - PHYSICS

Programme Scheme and Scheme of Examinations (For students admitted in the academic year2020-21& onwards)

	,			lrs/	_ u_	- M:	ax. Mai	ks	ts			
Part	Category	Course Code	Title of the Course	Contact Hrs week	Exam Duration hrs.	CIA	ESE	Tot	Credits			
		1 . 11	SEMESTER	31	. 74	THE REAL PROPERTY.	建	al	HE SES			
	-1											
111	Core: 1	20PHP01	Classical Mechanics	5	3	25	75	100	4			
- 111	Core :II	20PHP02	Mathematical Physics	5	3	25	75	100	4			
Ш	Core : Ill	20PHP03	Quantum Mechanics - I	5	3	25	75	100	4			
	Core: IV	20PHP04	Numerical Methods & MATLAB Programming	5	3	25	75	100	4			
111	Core: V	20PHP05	Comprehension in Physics -I (Self study - Online Exam)	-	1½	-	100	100	1			
111	Core VI	20PHP06	Advanced Physics Practical-I	3	-	-	-	-	-			
111	Core : VII	20PHP07	General Electronics Practical-I	3	•	-	-	-	-			
111	Elective: 1	20PHP08A/ 20PHP08B	Essentials of Nanoscience / Radiation Physics	4	3	25	75	100	4			
			TOTAL	30				600	21			
		·	SEMESTER - II									
Ш	Core 1X	20PHP09	Quantum Mechanics - II	5	3	25	75	100	4			
111	Core: X	20PHP10	Advanced Electronics	5	3	25	75	100	4			
111	Core: XI	20PHP11	Solar Physics	3	3	25	75	100	4			
111	Core : XII	20PHP12	Comprehension in Physics Paper- II (Self study - Online Exam)	,-	11/2	-	100	100	1			
111	Core :XIII	20PHP06	Advanced Physics Practical-I	5	4	40	60	100	4			
111	Core : XIV	20PHP07	General Electronics Practical-I	5	4	40	60	100	4			
111	Elective: II	20PHP13A/ 20PHP13B	Astronomy & Astrophysics/ Experimental Techniques	5	3	25	75	100	4			
IV	Skill	20SEP01	Cyber Security	2	-	100	-	100	2			
	Enhancement: I		TOTAL	30				800	27			

			SEMESTER - III						
111	Core : XVI	20PHP14	Atomic and Molecular Spectroscopy	5	3	25	75	100	-4
111	Core :XVII	20PHP15	Nuclear Physics & Elementary Particles	5	. 3	25	75	100	4
III	Core: XVIII	20PHP16	Electromagnetic Field Theory	5	3	25	75	100	4
111	Core : XIX	20PHP17	Comprehension in Physics Paper- III (Self study - Online Exam)	•	1½	-	100	100	1
111	Open Elective	**	Environmental Physics	3	3	25	75	100	3
Ш	Core: XXI	20PHP18	Advanced Physics Practical-II	4	-	-	-	-	
111	Core : XXII	20PHP1.9	General Electronics Practical-II	4	-	-	-	-	
III	Elective: III	20PHP20A/ 20PHP20B	Biomedical Instrumentation/ Thin Film Physics and Crystal Growth	4	3	25	75	100	4
IV	Skill Enhancement: []	20SEPPH2	Industrial Training	-	-		100	100	2
v	Proficiency Enhancement: I	20PEPPH1/	Laser and its applications (self study)	-	3	-	100	100	2
			TOTAL	30				800	24
			SEMESTER - IV						
III	Core: XXIV	20PHP21	Condensed Matter Physics	6	3	25	75	100	4
III	Core: XXV	20PHP22	Thermodynamics and Statistical Mechanics	6	3	25	75	100	4
III	Core: XXVI	20PHP23	Electronic Communication Systems	6	3	25	75	100	4
III	Core: XXVII	20PHP24	Comprehension in Physics Paper-IV (Self study - Online Exam)	ı	1 1/2	-	100	100	1
III	Core: XXVIII	20PHP18	Advanced Physics Practical - II	5	6	40	60	100	4
III	Core: XXIX	20PHP19	General Electronics Practical-II	5	6	40	60	100	4
III	Core: XXX	20PHP25	Major Project and viva voice	2	-	50	150	200	3
			TOTAL	30				800	2
v	Proficiency	Online cou	irse / Learning Object repository	II	- IV	SEMST	TER		2
	Enhancement		Certificate Course	II - IV SEMESTER				2	
		4		Tot	al Ma	rks & C	redite	3000	10

(Signature with Seal)

Head,
Department of Physics.
P.K.R. Arts College for Women,
Gobichettipalayan -638476.

SEMESTER-I

Course Code	Course Name	Category	L	T	P	Credit
20PHP01	Classical Mechanics	Core	75	5	1	4

Preamble

The aim is to provide the students, the knowledge and understanding of the fundamental concepts in the dynamics of system of particles, motion of rigid body, Lagrangian and Hamiltonian formulation of mechanics

Course Outcome

On successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Demonstrate knowledge of core principles in Mechanics and	K1, K2, K3
	Understand and apply Lagrange's equations to simple Physical	
	systems	
CO2	Describe and understand the motion of a mechanical system	K1, K2, K3
	using Lagrange-Hamilton formulation	
CO3	Study the Hamilton Jacobi Method and Poisson Brackets	K1, K2, K3
CO4	Understand the Kepler's Problem	K1, K2, K3
CO5	Describe and understand planar and spatial motion of a rigid body	K1, K2, K3

UNIT I (15 Hrs)

Lagrangian Formulation: Constraints and Degrees of Freedom-Generalized Coordinates: Generalized Displacement, Velocity, Acceleration, Momentum, force & Potential-Variational technique and Euler Lagrange Differential equation-Hamilton's Variational principle-Lagrange's equation of motion from Hamilton's principle-D'Alembert's principle-Application of Lagrange's equation of motion: Linear Harmonic Oscillator-Simple Pendulum-Isotropic Oscillator.

UNIT II (15 Hrs)

Hamiltonian Formulation: Phase space – Hamiltonian - Hamilton's Canonical Equation of Motion - Physical Significance of H - Deduction of Canonical Equation from Variation principle - Application of Hamilton's equation of motion: Simple Pendulum, Linear Harmonic Oscillator, and Isotropic Oscillator - Principle of Least Action and Proof - Canonical Transformations - Generating Function and different forms.

UNIT III (15 Hrs)

Hamilton –Jacobi Method: Hamilton Jacobi Method- Solution of Harmonic Oscillator Problem by HJ method-Particle falling freely-Damped Harmonic Oscillator-Poisson Brackets-Definition-

Equation of motion in Poisson Bracket form-Jacobi -Poisson Theorem-Angular Momentum and Poisson's Bracket.

UNIT IV (15 Hrs)

Two Body Problems: Equivalent One body problem-General Features of central force motion-Stability of orbits and Conditions for closure- Kepler's Problem - Shapes of orbits-Inertial/Non inertial frames-Rotating Co-ordinate system-Effects of Coriolis force on moving bodies.

UNIT V (15 Hrs)

Rigid body dynamics: Euler's theorem-Euler's angles-Angular velocity of a rigid body-Angular momentum of Rigid Body-Moments and Products of Inertia-Principle Axis of Transformation-Torque Free Motion of a Rigid Body-Poinsot Solutions-The motion of a Symmetric Top under the action of Gravity-Stable and Unstable Equilibrium.

Books for Study:

1. *Classical Mechanics*, S.L.Gupta, V. Kumar & H. V. Sharma, 2015, Pragati Prakashan, Meerut. (All units)

Books for References:

1. Classical Mechanics, H. Goldstein, Charles P. Poole, John Safko, 2011, Pearson, India.

Course Code	Course Name	Category	L	T	P	Credit
20PHP02	Mathematical Physics	Core	75	5		4

The aim is to provide the students firm foundation in various mathematical methods developed and used for understanding different Physics phenomena.

Course Outcomes

On successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Understand physical phenomena in different geometry	K1, K2, K3
CO2	Study the complex variable and function and gain the knowledge	K1, K2, K3
	about analytical function	
CO3	Understand the linear vector space and vector operators used in	K1, K2, K3
	many areas of Physics	
CO4	Gain knowledge about Fourier series and Laplace transformation	K1, K2, K3
CO5	Demonstrate knowledge of group theory	K1, K2, K3

UNIT I (15 Hrs)

Special Functions: Legendre's Polynomials and Functions- Differential Equations and Solutions-Generating Functions- Orthogonality-Relation between Legendre Polynomial and their Derivatives Recurrence Relations- Bessel's Function-Differential Equation and Solution-Generating Functions-Recurrence Relations- Hermite function.

UNIT II (15 Hrs)

Complex Variable Theory: Functions of a Complex Variable-Single and Multi valued Functions-Cauchy-Reimann Differential Equation-Analytical Line Integrals of Complex Function-Cauchy's Integral Theorem and Integral Formula-Derivatives of an Analytic Function-Taylor's Variables Residue and Cauchy's Residue Theorem.

UNIT III (15 Hrs)

Linear Space: Definition of Vector Space-Linear Dependence-Linear Independence-Basis-Dimension of a Vector Space-Representation of Vectors and Linear Operators with respect to Basis-Schmidt Orthogonalization Process-Inner Product.

UNIT IV (15 Hrs)

Fourier Series & Laplace Transforms: Fourier Series-Dirichlet's Theorem-Change of Interval-Complex Form-Fourier Series in the Interval $(0, \infty)$ - Uses of Fourier Series.-Laplace Transform-

Definition-Properties-Translation Property-Inverse Laplace Transform-Properties, example problems.

UNIT V (15 Hrs)

Group Theory: Definition of Groups—Multiplication table — Subgroups, cosets and classes — Point and space groups — Homomorphism and isomorphism — Reducible and irreducible representations — Schur's lemma — The great orthogonality theorem (qualitative treatment without proof) — Formation of character table of C2v and C3v — Elementary ideas of rotation groups.

Books for Study:

- 1. *Mathematical Physics*, SathyaPrakash, 2002, Sultan Chand & Sons. [ISBN: 81-7014-925-8] (All Units)
- 2. *Mathematical methods for Physicists*, Arfken, weber & Harris, 2005, 7th edition, Elsevier Academic Press.
- 3. *Elements of group theory for Physicists* A.W. Joshi, -Wiley Eastern, 2002 (Unit V)

- 1. *Mathematical Physics*, B.D. Gupta, 3rd Edition, 2006, Vikas Publishing House.
- 2. Mathematical Physics, B.S. Rajput, 17th Edition 2004, Pragati Prakashan, Meerut
- 3. *Mathematical Physics*, P.K. Chattopadhayay, New Age International, New Delhi.
- 4. *Mathematical Physics*, P.P. Gupta, Yadav& Malik, KedarnathRamnath, Meerut.

Course Code	Course Name	Category	L	T	P	Credit
20PHP03	Quantum Mechanics-I	Core	75	5	-	4

The aim is to make the students to understand the concepts of Matrix formalism, learn the approximation methods and to know the Orbital and Spin angular momentum.

Course Outcome

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number	CO Statement	Level
CO1	Understand the formalism of quantum mechanics	K1, K2, K3
CO2	Quantum mechanics in spherically symmetric systems	K1, K2, K3
CO3	Solve complex systems using time-independent approximation methods	K1, K2, K3
CO4	Apply time-dependent perturbation theory to solve problems	K1, K2, K3
CO5	Grasp the concepts of spin and angular momentum, as well as their quantization- and addition rules.	K1, K2, K3

UNIT I (15 Hrs)

Introduction and Matrix formalism: Inadequacy of classical Physics - Wave packets - Uncertainty relations-Schrodinger wave equation and probabilistic interpretation. Hilbert space - Dirac's bra and ket notation - Operators as matrices - Matrix form of wave functions - Unitary transformation: Change of basis - Properties of unitary transformations - Schrodinger picture - Heisenberg picture - Interaction picture

UNIT II (15 Hrs)

Spherically Symmetric Systems: Schrödinger's equation for spherically symmetric potentials – Three dimensional harmonic oscillator – Rigid rotator with free axis – Solution of wave equation and eigen function for the rotator – Rigid rotator in a fixed plane – The Hydrogen atom – φ , θ and r equations and their solutions – Energy eigen values for the hydrogen atom – Degeneracy – The normal state of hydrogen atom

UNIT III (15 Hrs)

Time independent Approximation Methods: Time Independent Perturbation Theory in Non-Degenerate Case-Ground State of Helium Atom- Degenerate Case-Stark Effect in Hydrogen-Variation Method & its Application to Hydrogen Molecule- WKB Approximation.

UNIT IV (15 Hrs)

Time Dependent Perturbation Theory: Time Dependent Perturbation Theory-First and Second Order Transitions-Transition to Continuum of States-Fermi Golden Rule-Constant and Harmonic Perturbation-Transition Probabilities-Selection Rules for Dipole Radiation-Collision-Adiabatic Approximation

UNIT V (15 Hrs)

Angular Momentum: Orbital Angular Momentum-Spin Angular Momentum-Total Angular Momentum Operators-Commutation Relations of Total Angular Momentum with Components-Ladder Operators-Commutation Relation of Jz with J_+ and J_- Eigen Values of J^2 , Jz -Matrix Representation of J^2 , Jz, J_+ and J_- Addition of Angular Momenta- Clebsch Gordon Coefficients-Calculation of Clebsch Gordon Coefficients for $j_1=1/2$, $j_2=1/2$.

Books for Study:

- 1. *Quantum Mechanics*, Aruldas, 2nd edition, 2013, PHI Learning Pvt. Ltd. [ISBN: 978-81-203-3635-3] (All Units)
- 2. *Introduction to Quantum Mechanics* –David J Griffiths– Pearson- 2nd edition- 2016. [ISBN: 978-93-325-4289-1]

- 1. *Quantum Mechanics*, Gupta, Kumar & Sharma, 34th Edition, 2017, Jai Prakash Nath Publications. (All units)
- 2. Advanced Quantum Mechanics, Satya Prakash, 2001, Kedar Nath Ram Nath Co., Meerut.
- 3. *Quantum Mechanics*, Leonard.I. Schiff, 1968, McGraw Hill 3rd Edition. [ISBN: 0-07-085643-5] (Unit II)
- 4. *Quantum Mechanics*, V. Devanathan, 2005, Narosa Publishing House, New Delhi.
- 5. *A textbook of Quantum Mechanics*, P.M. Mathews and Venkatesan, 27th reprint 2002, Tata McGraw Hill publishing company Ltd., New Delhi.

Course Code	Course Name	Category	L	T	P	Credit
20PHP04	Numerical Methods & MATLAB	Core	75	5		4
20111104	Programming	Core	13	3	-	+

The aim is to provide the students to develop appropriate numerical abilities, prove results for various numerical root finding methods and to code various numerical methods in a modern computer language

Course Outcome

On successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Solve Differential equation by using various numerical methods	K1, K2, K3
CO2	Calculate Definite integrals by using appropriate numerical methods	K1, K2, K3
CO3	Understand about MATLAB fundamentals	K1, K2, K3
CO4	Write MATLAB programs for various loops	K1, K2, K3
CO5	Know about the interpretation of 2D and 3D Graphics in MATLAB	K1, K2, K3

UNIT I (15 Hrs)

Numerical Differentiation: Finding Roots of a Polynomial-Bisection Method-Newton Raphson Method-Solution of Simultaneous Linear Equation by Gauss Elimination Method (includes inverse of matrices)-Solution of Ordinary Differential Equation by Euler, Runge-Kutta Fourth Order Method for solving first order Ordinary Differential Equations.

UNIT II (15 Hrs)

Numerical Integration: Newton's cotes formula-Trapezoidal rule-Simpson's 1/3 rule-Simpson's 3/8 rule -Gaussian quadrature method-(2 point and 3 point formulae)-Giraffe's root square method for solving algebraic equation.

UNIT III (15 Hrs)

MATLAB Fundamentals: Introduction-MATLAB Features-Desktop windows: Command, Workspace, Command History, Array Editor and Current Directory -MATLAB Help and Demos- MATLAB Functions, Operators and Commands. Basic Arithmetic in MATLAB-Basic Operations with Scalars, Vectors and Arrays-Matrices and Matrix Operations-Complex Numbers- MATLAB Built-In Functions- Saving and loading data — Plotting simple graphs-Illustrative Examples

UNIT IV (15 Hrs)

MATLAB Programming: Control Flow Statements: *if, else, else if, switch* Statements-*for, while* Loop Structures-*break* Statement-Input/output Commands-Script "m" Files -Function "m" Files-Controlling Output - Language specific features – Advanced Data objects . Applications – (Programs about Linear Algebra – Curve fitting and Interpolation – Data analysis and Statistics – Numerical Integration – Ordinary differential equations – Nonlinear Algebraic Equations).

UNIT V (15 Hrs)

MATLAB Graphics: 2D Plots-Planar Plots, Log Plots, Scatter Plots, Contour Plots- Using subplot to Layout multiple graphs -Multiple Figures, Graph of a Function-Titles, Labels, Text in a Graph- Line Types, Marker types, Colors-3D Graphics-Curve Plots-Mesh and Surface Plots-Handle Graphics – Saving and printing Graphs – Errors - Illustrative Examples.

Books for Study:

- 1. *Numerical methods*, Kandasamy. P, Thilagavathi. K, Volume I and II, 2004, S. Chand and Company Ltd, New Delhi. (Units I & II)
- 2. Getting Started with MATLAB A Quick Introduction for Scientists and Engineers, Rudra Pratap, 2003, Oxford University Press. (Units III V)
- 3. *MATLAB An Introduction with Applications*, Amos Gilat, 2007, John Wiley & Sons, Inc., U.K. [ISBN: 978-81-26511394-9] (Units III V)

- 1. *Numerical methods in Science and Engineering*, M. K. Venkataraman, 1996, National Publishing Co. Madras.
- 2. *Engineering and Scientific Computations Using MATLAB*, Sergey E. Lyshevski, 2003, John Wiley & Sons Inc, publication. [ISBN 0-471-46200-4]
- 3. *Numerical Methods Using Matlab*, John Mathews & Kurtis Fink, 2006, Prentice Hall, New Jersey.
- 4. Introductory Methods of Numerical Analysis, S.S. Sastry, 2005, Prentice Hall.
- 5. *Introduction to MATLAB 7 for Engineers*, William John Palm, 2005, McGraw, Hill Professional.
- 6. Introduction to MATLAB 7, Dolores M. Etter, David C. Kuncicky, 2004, Prentice Hall.

Course Code	Course Name	Category	L	T	P	Credit
20PHP06	Advanced Physics Practical - I	Core: Practical	120	-	8	4

(Examination at the end of Second Semester)

Preamble

The aim is to provide the students better practical knowledge of general Physics experiments, learn about handling of experiments and to know about different equipments used

Any Twelve Experiments

- 1. Young's Modulus-Elliptical Fringes (Cornu's Method)
- 2. Young's Modulus-Hyperbolic Fringes (Cornu's Method)
- 3. Viscosity of a Liquid-Mayer's Oscillating Disc
- 4. Stefan's Constant
- 5. Rydberg's Constant-Solar Spectrum
- 6. Thickness of Wire by Air Wedge and Diffraction
- 7. Determination of Audio Frequencies-Bridge Method
- 8. Thermionic Work Function
- 9. Thermal Conductivity-Forbe's Method
- 10. Electronic Charge 'e' by Millikan's Oil Drop Method
- 11. Electronic Specific Charge 'e/m' by Thomson's Method
- 12. Thermistor-Temperature Coefficient and Band Gap Energy Determination
- 13. Specific Heat of a Liquid-Ferguson's Method
- 14. Biprism on Optical Bench-Determination of Wavelength
- 15. He-Ne Laser Measurement of Wavelength using reflectance grating.
- 16. Babinet's Compensator
- 17. LG Plate-Resolving Power
- 18. Thickness of the wire by diffraction
- 19. Fabry-Perot Interferometer-Study of Fine Structure
- 20. Geiger Muller Counter-Determination of Half Life of 'In'
- 21. MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations
- 22. MATLAB Programming -Solution of Ordinary Differential Equations
- 23. MATLAB Programming -Runge-Kutta Method
- 24. MATLAB Programming Newton-Raphson Method
- 25. MATLAB Programming-Mean, Median & Standard Deviation
- 26. MATLAB Programming-Curve Fitting & Interpolation
- 27. MATLAB Programming-Matrix Summation, Subtraction and Multiplication
- 28. MATLAB Programming-Matrix Inversion and Solution of Simultaneous Equations
- 29. He-Ne Laser Measurement of refractive index of liquids.
- 30. He-Ne Laser Power distribution measurement.

31. He-Ne Laser- Thickness of wire.

Course Code	Course Name	Category	L	T	P	Credit
20PHP07	General Electronics Practical - I	Core: Practical	120	-	8	4

(Examination at the end of Second Semester)

Preamble

The aim is to provide the students better practical knowledge of general Physics experiments, learn about handling of experiments and to know about different equipments used.

Any Fifteen Experiments

- 1. Design of Regulated and Dual Power Supply.
- 2. Basic Logic Gates-Digital IC's
- 3. Parameters of Op-Amp
- 4. Design of Wave Form Generators- using Op-Amp.
- 5. Design of Phase-Shift Oscillator- Op-Amp
- 6. Design of Wein's Bridge Oscillator- Op-Amp
- 7. Design of Active Filters- Op-Amp
- 8. Design of Differential Amplifier- Op-Amp
- 9. Sign Changer, Scale Changer, Adder and Subtractor- Op-Amp
- 10. Design of UJT Relaxation Oscillator
- 11. CRO-Differentiating, Integrating, Clipping and Clamping Circuits, Square Wave Testing
- 12. SCR-Characteristics and an Application
- 13. Source Follower
- 14. Amplifier-Inverting, Non-Inverting, Voltage Follower- Op-Amp
- 15. Characteristics of FET
- 16. Digital IC's- Counters
- 17. Schmitt Trigger using discrete components and OP-AMP/ Timer 555
- 18. D/A converter using Op. Amp
- 19. MATLAB Programming-Charging of a Capacitor in an RC Circuit with three Time Constants
- 20. MATLAB Programming- Full Wave Rectifier-Determination of (a) Peak-to-Peak Value of Ripple Voltage, (b) DC Output Voltage (c) Discharge Time of the Capacitor (d) Period of Ripple Voltage
- 21. MATLAB Programming- Plot of Voltage and Current of an RLC Circuit under Steady State Conditions
- 22. MATLAB Programming- NPN Transistor-Plotting Input & Output Characteristics
- 23. MATLAB Programming-Frequency Response of a Low Pass Op-Amp Filter Circuit

24. MATLAB Programming-Diode-Plot of Forward Characteristics & Load Line Plot - Estimation of Operating Point

Course Code	Course Name	Category	L	T	P	Credit
20PHP08A	Essentials Of Nanoscience	Core: Elective	60	4	1	4

Preamble

The aim is to provide the basic knowledge about basics of nanoscience and technology and to acquire the knowledge about synthesis methods and characterization techniques and its applications

Course Outcome

On successful completion of the course, the student will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Appreciate the importance of Nanoscience	K1, K2, K3
CO2	Recognize the different types of nanomaterials	K1, K2, K3
CO3	Demonstrate knowledge about Polymeric namoparticles	K1, K2, K3
CO4	Understand the properties of nanomaterials	K1, K2, K3
CO5	Understand the properties of nanomaterials	K1, K2, K3

UNIT I (12 Hrs)

Evolution of Nanoscience and Nanotechnology: History of Nanoscience and Nanotechnology – Ancient, Medieval and Modern period – Terms and Definitions – Scale of materials – macro, micro and nanoscale – pioneers and contributors in Nanoscience and nanotechnology – Fabrication methods – Top-down and bottom-up approaches (Principles and types) – Nanoscience and nanotechnology practiced by nature –Inspirations from nature – Natural nanomaterials – Inorganic, organic and biological origin.

UNIT II (12 Hrs)

Nanomaterials: Structure, properties and importance of the following Nanomaterials - Metallic nanoparticles - Semiconductor quantum dots, core-shell nanoparticles - carbon based nanomaterials - fullerenes, carbon nanotubes (single walled and multi walled) and graphenes - Supramolecules - Dendrimers, micelles and reverse micelles - Nanoporous Materials. (Synthesis of the nanomaterials not included)

UNIT III (12 Hrs)

Polymeric Nanomaterials: Introduction to polymers – classification of polymers – types of polymerization processes – Block copolymers - Glass transition temperature of Polymers – Structure, properties and importance of selected synthetic and Biopolymers – Polystyrene, Polyvinyl alcohol, Polystyrene sulphonate, Polyethylene glycol, Polyhydroxy alkanoate, Polylactic acid and Chitosan – Conducting polymers – Introduction, principle of conduction and different types of conducting polymers.

UNIT IV (12 Hrs)

Properties at the Nanoscale – **I:** Comparison of properties at bulk and nano – Surface and Volume – Surface energy – Surface stabilization – Surface energy minimization mechanisms – Application of classical thermodynamics 133 to nanomaterials (Small system thermodynamics) – Chemical interactions at Nanoscale.- Primary interactions (Ionic, Covalent and Metallic bonds) – Secondary interactions – Electrostatic interaction, Hydrogen bonding, Van-der waals attraction, hydrophobic effect.

UNIT V (12 Hrs)

Properties at the Nanoscale – II: Optical properties in metals, semiconductors and insulators-Photoluminescence - Cathode luminescence- Electro luminescence- Fluorescence-Phosphorescence- Surface Plasmon resonance and optical properties in metallic nanoparticles – Quantum confinement and emission characteristics of semiconductor nanocrystals – optical properties of core-shell nanoparticles – Mechanical, thermal and electrical properties of carbon based nanomaterials (CNT & graphenes) – Guest-Host relationship and Molecular recognition in supramolecules.

Books for Study:

- 1. Nanoscience and Nanotechnology, M. S. Ramachandra Rao Shubrasingh [ISBN: 978 81 265 4201 7]. (Units I, II and III)
- 2. *Principles of Nanoscience and Nanotechnology*, M. A. ShahTokeerAhmad, Narosa publishing home pvt. Ltd., [ISBN: 978 81 8487 072 5]. (Units IV and V)

- 1. Nanotechnology, Er. Rakesh Rathi, 2009-15, S. Chand and Co. Pvt. Ltd.
- 2. Nanotechnology Science Innovations and Oppurtunity, Lynn E.Foster.

Course Code	Course Name	Category	L	T	P	Credit
20PHP08B	Radiation Physics	Core: Elective	60	4	1	4

The aim is to provide deeper knowledge and understanding of Radiation Physics and to learn information about their principles and methods.

Course Outcome

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number	0 0 2 33333	Level
CO1	Know about the Radiation Physics.	K1, K2, K3
CO2	Understand the wind energy and geo-thermal energy.	K1, K2, K3
CO3	Suggest methods to store energy through Bio-conversion and	K1, K2, K3
	Ocean energy.	111, 112, 110
CO4	Use appropriate methods involved in Direct energy conversion.	K1, K2, K3
CO5	Know advantages of Non-conventional Energy Resources.	K1, K2, K3

Unit I (12 Hrs)

Basic Radiation Physics: Introduction to radiation Physics- Atomic and Nuclear structure-Electron interaction- Photon interaction- Classification of forces in nature, fundamental particles, radiation- Atomic and nuclear structure- Bohr's model of the hydrogen atom- Radioactivity-Modes of radioactive decay- Electron Interaction- Photon Interaction.

Unit II (12 Hrs)

Radiation and Particle Detector: Interaction of particles and radiation with matter-Photoelectric and Compton effect- Gas Electron Multiplier (GEM)- Detection of neutrons-Surface photoemission detectors- Photo cathodes and Photo tubes- Semiconductor detectors.

Unit III (12 Hrs)

Radioactivity in the Environmental Media: Introduction to environmental radioactivity-Airborne radioactivity- Production and Propagation of Airborne radioactivity by tall & short stacks- Water Activation- Geological Media Activation- The Propagation of Radio nuclides Through Geological Media.

Unit IV (12 Hrs)

Radioactivity in Medicine: Basics of radiotherapy- Linear accelerators- Measuring equipments-Treatment planning & process- Dependence of photon energy and atomic number- attenuation and absorption. Unit V (12 Hrs)

Radiation Protection: Human Factors- Environmental Factors- Toxic Agents, such as radioactive Material- Organizational Plan for Radiation Protection- Radiation Lab Protection Procedures- Accident Anticipation- Mitigating Internal Radiation Hazards.

References:

Web References:

- 1. http://www-naweb.iaea.org/nahu/DMRP/documents/Chapter1.pdf
- 2. https://www.asc.ohio-state.edu/honscheid.1/s12-780/references/turku_lecturenotes.pdf
- 3. https://www-esh.fnal.gov/TM1934_PDF_Files/TM_1934_Revision_9B.pdf
- 4. http://www.imre.ucl.ac.be/rpr/sv2012/RDTH3120-partie1.pdf
- 5. http://www.ehs.washington.edu/rsotrain/radprotectionprinciples/table_of_contents.pdf

SEMESTER-II

Course Code	Course Name	Category	L	T	P	Credit
20PHP09	Quantum Mechanics - II	Core	75	5	-	4

Preamble

The aim is to make the students understand the Scattering theory, the applications to atomic structures, about the identical particles and their spin and quantum field theory.

Course Outcome

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Understand how to apply perturbation theory to describe scattering	K1, K2, K3
	and partial wave analysis	
CO2	Understand the application of approximation methods to atomic	K1, K2, K3
	structure	
CO3	Understand the form and construction of relativistic wave	K1, K2, K3
	equations	
CO4	Explain the idea of spin and construct symmetric and	K1, K2, K3
	antisymmetric wave functions	
CO5	Appreciate the need for quantum field theory	K1, K2, K3

Unit I (15 Hrs)

Scattering Theory: Scattering Amplitude - Expression in terms of Green's Function - Born Approximation and its Validity - Partial Wave Analysis - Phase Shifts - Scattering by Coulomb and Yukawa Potential

Unit II (15 Hrs)

Application to Atomic Structure: Central Field Approximation - Thomas Fermi Model – Hartree's Self Consistent Model – Hartree Fock Equation - Alkali Atoms - Doublet Separation – Intensities - Complex Atoms - Coupling Schemes

Unit III (15 Hrs)

Relativistic Wave Equation: Klein Gordon Equation - Plane Wave Equation - Charge and Current Density - Application to the study of Hydrogen Like Atoms - Dirac Relativistic Equation for a Free Particle - Dirac Matrices - Dirac Equation in Electromagnetic Field - Negative Energy States.

Unit IV (15 Hrs)

Identical Particles and Spin: Identical particles – Symmetric and anti-symmetric wave functions – Construction of symmetric and antisymmetric wave functions – Pauli's exclusion principle – Physical significance – Pauli's spin operator – Commutation relations

Unit V (15 Hrs)

Quantum Field Theory: Quantization of Real Scalar wave Field – Quantization of Complex Scalar wave Field - Quantization procedure for particles - Classical Lagrangian Equation - Classical Hamiltonian Equation - Field Quantization of the Non - Relativistic Schrodinger Equation - Creation, Destruction and Number Operators.

Books for Study:

- 3. *Quantum Mechanics*, Aruldas, 2nd edition, 2013, PHI Learning Pvt. Ltd. [ISBN: 978-81-203-3635-3] (All Units)
- 4. *Quantum Mechanics*, Leonard.I. Schiff, 1968, McGraw Hill 3rd Edition. [ISBN: 0-07-085643-5] (Unit II)
- 5. *Introduction to Quantum Mechanics* –David J Griffiths– Pearson- 2nd edition- 2016. [ISBN: 978-93-325-4289-1]

- 1. *Quantum mechanics*, Satya Prakash & Swathi saluja, 2017, Kedar Nath Ram Nath Publications. [ISBN: 978-81-907011-7-4]
- 2. *Quantum Mechanics*, Gupta, Kumar & Sharma, 34th Edition, 20017, Jai Prakash Nath Publications, Meerut.
- 3. *A Text Book of Quantum Mechanics*-P.M. Mathews & K. Venkatesan-Tata McGraw Hill 29th Reprint 2002
- 4. Quantum Mechanics-Devanathan-Narosa Publishing-New Delhi, 2005
- 5. *Quantum Mechanics*-A.K. Ghatak and S. Loganathan- McMilan India 4th Edition, 1999

Course Code	Course Name	Category	L	T	P	Credit
20PHP10	Advanced Electronics	Core	75	5	-	4

The aim is to make the students to understand the concept of semiconductor devices, to gain knowledge about fabrication and characteristics of Integrated Circuits and to learn the concepts of advanced level of digital electronics.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Understand about the different semi conductor devices	K1, K2, K3
CO2	Learn the fabrication and characteristics of the Integrated circuit	K1, K2, K3
	technology	
CO3	Understand the linear and non-linear analog systems	K1, K2, K3
CO4	know about flip-flops and Boolean algebra and solve equations	K1, K2, K3
	using Karnaugh maps	
CO5	Design the Synchronous counters	K1, K2, K3

Unit I (15 hrs)

Semiconductor Devices: Field effect transistors – JFET bias line and load line – MOSFET construction and Symbols – FET as a Voltage Variable Resistor-Common Source Amplifier at High Frequencies-Common Drain Amplifier at High Frequencies-Silicon Controlled Rectifier (SCR) Characteristics-SCR Power Control- Tunnel Diode -Optoelectronics: Photo Resistor-Photo Diode-Photo Transistor-LED-Photo Voltaic Effect-Solar Cells.

Unit II (15 hrs)

Integrated Circuits-Fabrication and Characteristics: Integrated circuit technology – Basic monolithic circuits – Epitaxial growth – Masking and etching – Diffusion of impurities – Transistor for monolithic circuits – Monolithic diodes – Integrated resistors- Integrated capacitors – Monolithic circuit layout – Additional isolation methods – LSI and MSI – Metal semiconductor contact.

Unit III (15 hrs)

Integrated Circuits as Analog System Building Blocks: Linear analog systems: Basic Op.Amp. applications – Sign changer – Scale changer – Phase shifter – Summing amplifier – Voltage to current converter – Current to voltage converter – DC voltage follower – Differential DC amplifier – Stable AC coupled amplifier – Analog integration and differentiation – Electronic analog computation

Nonlinear analog systems: Comparator – Sample and hold circuits – D/A converter: Binary weighted resister and ladder type – A/D converter: Successive type and Dual-slop converters

Unit IV (15 hrs)

Flip-flops: S-R, Clocked S-R, D, J-K, T, Master-Slave J-K flip-flops – Their state diagrams and characteristic equations – Edge triggering in flip-flops

Logic gates: OR, AND, NOT, NOR and NAND gates, Exclusive OR gate – NAND and NOR as Universal gates.

Boolean algebra and Minimization Techniques: Basic laws of Boolean algebra – De Morgan's theorems – Adder, Subtractor, Comparator, Decoder / Demultiplexer - Sum of products and Product –of-sums - Karnaugh map (up to four variables only) –Don't care

Unit V (15 hrs)

Synchronous Counters: Design of Synchronous Counters: Design of MOD-3, MOD-6 ,and MOD-10 counters using JK Master-slave flip-flops only – Register – 4 bit shift Register – Serial-in serial-out, Serial-in Parallel-out, Parallel-in Serial-out and Parallel-in Parallel-out – Design of four bit self-correcting ring counter using D-flip-flop

Books for Study:

- 1. *Principles of Electronics*, V.K.Mehta, Rohit Mehta, S.Chand and Company Pvt Ltd,[ISBN: 81-219-2450-2].(Unit I)
- 2. *Modern Physics*, R.Murugeshan, (2013), S.Chand and Compant Pvt Ltd.
- 3. *Integrated electronics*, Jacob Millman, Christos Halkias, Chetan D Parikh, Second Edition, Tata McGraw hill.(Unit II & III)
- 4. *Digital Circuits and Design*, S.Salivahanan, S.Arivazhagan, Third Edition, Vikas Publishing house Pvt Ltd.(Unit IV & V)

- 1. *Handbook of Electronics*, Gupta and Kumar.
- 2. *Digital Fundamentals*, Floyd-UBS 1600.
- 3. *Digital Principles and Applications*, Malvino & Leach, McGraw Hill.
- 4. Applied Electronics, R S Sedha.

Course Code	Course Name	Category	L	T	P	Credit
20PHP11	Solar Physics	Core	45	3	-	4

The aim is to provide the students an overview of the energy problem faced by the current generation, underline the importance of renewable energy sources and to get a thorough knowledge about renewable solar energy technology

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Get the knowledge about the introduction of Energy Sources	K1, K2, K3
CO2	Learn the prospects of renewable Energy sources and its applications	K1, K2, K3
CO3	Understand about Solar radiations and its measurements	K1, K2, K3
CO4	Understand about Solar cells and conversion of solar energy to	K1, K2, K3
	electric energy	
CO5	Understand about the applications of Solar energy	K1, K2, K3

Unit I (9 Hrs)

Introduction to Energy Sources: Energy sources - World and Indian energy future - Types of energy sources - World energy futures - Energy sources and their availability.

Unit II (9 Hrs)

Renewable Energy: Prospects of renewable energy sources - solar energy - Its uses and barriers in the implementation of renewable energy systems. Indian research and perspectives.

Unit III (9 Hrs)

Solar Energy: Solar radiation at the Earth's Surface - Solar constant.

Solar Radiation Measurements: Solar energy measuring equipments – pyrheliometers – pyranometers.

Unit IV (9 Hrs)

Solar Cells: Solar cells for direct conversion of solar energy to electric energy - Solar cell parameter - Solar cell electrical characteristics - Efficiency - Single crystal silicon solar cells - Polycrystalline silicon solar cells - Cadmium sulphide solar cells.

Unit V (9 Hrs)

Applications of Solar Energy: Solar water heating - space heating and space cooling - solar photo voltaics - agricultural and industrial process heat - solar distillation - solar pumping- solar furnace - solar water heater - solar cooking - solar green house.

Books for study:

- 1. *Solar Energy Utilisation*, G.D.Rai, 1987, Khanna Publishers, New Delhi, 3rd Edition. (All Units)
- 2. *Non-Conventional Energy Sources*, B.H.Khan, 2006, Tata McGraw Hill. [ISBN 0-07-060654-4]
- 3. *Non-Conventional Energy Sources and Utilisation*, Er. R. K. Rajput, (2014) S.Chand & Company Pvt. Ltd, [ISBN 81-219-3971-2].
- 4. *Non-Conventional sources of Energy*, G.D.Rai, 5th Edition, Khanna Publishers, New Delhi. [ISBN: 81-7409-073-8]

- 1. *Renewable Energy*, Godfrey Boyle, Oxford University Press in association with the Open University, 2004, [ISBN: 9780199261789]
- 2. Principles of Solar Engineering F. Kreith and J.F. Kreider, 1978, Tata McGraw Hill.
- 3. Solar Energy, M.P.Agarwal, 1983 S. Chand and Co., New Delhi.
- 4. Solar Energy, S.P.Sukhatme, 1996, Tata McGraw Hill. [ISBN: 0-07-462453-9]

Course Code	Course Name	Category	L	T	P	Credit
20PHP13A	Astronomy & Astrophysics	Core: Elective	75	5	-	4

The aim is to provide the students deeper knowledge and understanding of astronomy, learn information about stars and galaxies and to know about the destruction of stars.

Course Outcome

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number	CO Statement	Level
CO1	Understand the Science based on observations of universe	K1, K2, K3
CO2	Gain the knowledge about basics of stars and Galaxies	K1, K2, K3
CO3	know about Sun and its Composition	K1, K2, K3
CO4	Understand the Classification of Galaxies	K1, K2, K3
CO5	Know about the Destruction of Stars.	K1, K2, K3

UNIT I (15 hrs)

History of Astronomy: Introductory History of Astronomy-Ptolemy's Geocentric Universe-Copernicus' Heliocentric Universe-Tycho Brahe and Galileo's Observations- Kepler's Laws of Planetary Motion-Newtonian Concept Of Gravity-Highlights of Einstein's Special and General Theory Of Relativity-Curved Space Time-Evidence of Curved Space Time-Bending Of Light-Time Dilation

UNIT II (15 hrs)

Stars & Galaxies: Stars and Galaxies-Distances-Trigonometric Parallax-Inverse Square Law-Magnitude of Stars-Apparent Magnitude-Absolute Magnitude and Luminosity-Color and Temperature- Composition of Stars-Velocity, Mass and Sizes of Stars-Types of Stars-Temperature Dependence-Spectral Types- Hertzsprung - Russell (HR) Diagram-Spectroscopic Parallax

UNIT III (15 hrs)

Sun and its composition: The Sun-Its Size and Composition- Sun's Interior Zones-Sun's Surface-Photosphere-Chromosphere-Corona-Sun's Power Source-Fusion Reaction Mechanism.

UNIT IV (15 hrs)

Galactic astronomy: Milky Way Hubble classification of galaxies-Spiral galaxies, Elliptical galaxies, Irregular galaxies, Dwarf galaxies; Masses of galaxies-Rotation curves of galaxies; Dark matter

UNIT V (15 hrs)

Lives and death of stars: Stellar Evolution-Mass Dependence-Giant Molecular Cloud-Protostar-Main Sequence Star-Subgiant, Red Giant, Supergiant-Core Fusion-Red Giant (Or) Supergiant- Planetary Nebula (Or) Supernova-White Dwarfs-Novae And Supernovae- Neutron Stars-Pulsars-Black Holes-Detecting Black Holes

Books for study:

- 1. *Lectures on Astronomy, Astrophysics, and Cosmology*, Luis A. Anchordoqu, Department of Physics, University of Wisconsin-Milwaukee, U.S.A (Dated: Spring 2007).
- 2. Lecture Notes of Department of Physics, University of Wisconsin-Milwaukee
- 3. *Astrophysics of the Solar System*, K.D. Abhayankar, University press (India) Pvt Ltd, January 24, 2017. [ISBN: 9788173719694].
- 4. *An Introduction to Planetary Physics: The terrastial Planets*, William M. Kaula, 1968, Wiley, NewYork, Space Science text series.
- 5. Astrophysics of the Sun, Harold Zirin, Cambridge University Press, 23 June 1988.

Study material available in the website: www.astronomynotes.com (All Units)

Course Code	Course Name	Category	L	T	P	Credit
20PHP13B	Experimental Techniques	Core: Elective	75	5	-	4

The aim is to provide the students knowledge about the techniques behind various measuring instruments and to handle the various electronic measuring instruments.

Course Outcome

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number	CO Statement	Level
CO1	Know about the errors and its types in measurements.	K1, K2, K3
CO2	Suggest filters for signal conditioning.	K1, K2, K3
CO3	Understand about the different types of transducers.	K1, K2, K3
CO4	Know applications about various electronic measuring instruments.	K1, K2, K3
CO5	Use appropriate methods for analyzing electronic waves	K1, K2, K3

Unit I (15 Hrs)

Measurement of errors: accuracy, precision, resolution, sensitivity -absolute and relative errors-Types of errors -gross error, systematic error and random error.

Standards of measurements: Classification of standards, time and frequency standards, electrical standards.

Unit II (15 Hrs)

Electrical Transducer Classification: Active and Passive transducers- selecting a good transducer – requirements of an electrical transducer – transducer types- resistive, inductive, capacitive and Piezoelectric transducer-Digital displacement transducers – thermistors.

Unit III (15 Hrs)

Amplifiers and Signal Conditioning: Instrumentation amplifiers-Isolation amplifiers-Chopper amplifiers-Voltage to frequency converters-Frequency multipliers-logarithmic amplifiers, S/H Circuits Active filters-Low pass, High pass, Band pass and Band stop filters.

Unit IV (15 Hrs)

Electronic Measuring Instrument: Q-meter-Vector impedance meter Digital frequency meter - Digital voltmeter -Phase meter-RF power and voltage measurement -Power factor meter -Vector voltmeter. Display and Recording: X-Y Recorders-Magnetic Tape recorders-Storage Oscilloscope- cathode ray oscilloscope.

Unit V (15 Hrs)

Analysis: Wave Analyzers-Audio frequency Wave analyzer-Harmonic distortion analyzers-Resonant harmonic distortion analyzer-Heterodyne harmonic distortion analyzer-Fundamental suppression harmonic distortion analyzer-Spectrum analyzer.

Books for study:

- 1. *Electrical & Electronics Measurement &Instrumentation*, A.K. Sawhney, Dhanpat Rai and sons. (All Units)
- 2. *Modern Electronic Instrumentation*, H. S. Kalsi, 2010, 3rd Edition Tata McGraw Hill.

- 1. *Modern Electronic Instrumentation and Measurement Techniques*, A.O. Hefnick and W.D. Cooper., Prentice Hall India Publications.
- 2. *Introduction to Instrumentation and Control*, A.K. Ghosh-Prentice Hall India Publications

Course Code	Course Name	Category	L	T	P	Credit
20AEP01	Cyber Security	Skill Enhancement Course	30	2	1	2

The aim is to provide the students, the basics of cyber security and the security threats in day-to-day activities.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Understand the basic concepts of information security and its types.	K1
CO2	Obtaining the knowledge thoroughly on cyber security and its	K1
	principles	
CO3	Deal with risk management and threats	K1,K2
CO4	Gain detailed knowledge on security issues in social media	K3,K4
CO5	Apply and work with cyber security applications in real world	K5,K6

Unit I (6 Hrs)

Information Security: History of Information Security - Need for Security.

Types of Security: Physical Security –Network Security –Personal Security –Operation Security –Communication Security - Information Security Threats.

Unit II (6 Hrs)

Introduction to Cyber Security

Cyber Security: Objectives- Roles- Differences between Information Security and Cyber Security.

Cyber Security Principles: Confidentiality- Integrity – Availability.

Unit III (6 Hrs)

Risks & Vulnerabilities

Risk Meaning: Risk Management –Problems of Measuring Risk -Risk Levels-Risk Analyzes-Risk Assessment –Response to Risk Terminology

Threats: Components of Threats-Types of Threats-

Vulnerabilities: Computing System Vulnerabilities —Hardware Vulnerabilities-Software Vulnerabilities-Data Vulnerabilities-Human Vulnerabilities.

Unit IV (6 Hrs)

Social media

Introduction to social media: What, Why –Pros and cons**Security issues in social media:** Mail-Facebook-Whatsapp-Twitter-Preventive and control measures.

Unit V (6 Hrs)

Case study

Impact of social media: Education -Business- Banking-Mobile -Human Life- Present generation-Indian scenario.

References:

Web References:

- 1. https://m.youtube.com/watch?v=o6pgd8gLFHg
- 2. https://m.youtube.com/watch?v=3rl4ZjZpcHU
- 3. https://blog.barkly.com/10-fundamental-cybersecurity-lessons-for-beginners
- 4. https://5social media security risk and how to avoid them.html
- 5. https://10 cyber security twitter profiles to watch.html
- 6. https://cyber security in banking 4 trends to watch in 2017.html
- 7. https://gmail hacking security tips-Indian cyber security solutions.html
- 8. https://why social media sites are the new cyber weapons of.html
- 9. EBook: A complete guide to Staying Ahead in the Cyber Security Game

SEMESTER-III

Course Code	Course Name	Category	L	T	P	Credit
20PHP14	Atomic and Molecular Spectroscopy	Core	75	5		4

Preamble

The aim is to provide the students, the skills and capability for formulating and analyzing chemical compounds using Atomic and Molecular Spectroscopy

Course Outcomes

On successful completion of the course, the students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Develop knowledge in Atomic Spectra and Study the microwave spectra for various types of molecules.	K1, K2, K3
CO2	Describe and understand the concepts in vibration-rotation and Raman Spectroscopy	K1, K2, K3
CO3	Study the concepts behind the Fluorescence & Phosphorescence Spectroscopy	K1, K2, K3
CO4	Gain knowledge in relaxation process & chemical shift in molecular level	K1, K2, K3
CO5	Acquire knowledge in Hyperfine structures	K1, K2, K3

Unit I (15 Hrs)

Atomic Spectroscopy: Atoms in External Magnetic Fields -Normal Zeeman Effect-Anomalous Zeeman Effect-Magnetic Moment of Atom -Lande's g Formula- Paschen Back Effect- Stark Effect-Hyperfine Structure of Spectral Lines - Spectra of Hydrogen and Alkali Atoms

Microwave Spectroscopy-Experimental Methods-Theory of Microwave Spectra of Linear, Symmetric Top Molecules -Hyperfine Structure

Unit II (15 Hrs)

IR Spectroscopy: Practical Aspects-Theory of IR Rotation Vibration Spectra of Gaseous Diatomic Molecules- Applications-Basic Principles of FTIR Spectroscopy.

Raman Spectroscopy: Classical and Quantum Theory of Raman Effect- Rotation Vibration Raman Spectra of Diatomic and Polyatomic Molecules-Applications-Laser Raman Spectroscopy

Unit III (15 Hrs)

Fluorescence & Phosphorescence Spectroscopy - Electronic Excitation of Diatomic Species-Vibrational Analysis of Band Systems of Diatomic Molecules-Deslander's Table-Intensity

Distribution-Franck Condon Principle- Rotational Structure of Electronic Bands-Resonance and Normal Fluorescence - Intensities of Transitions-Phosphorescence-Population of Triplet State - Experimental Methods-Applications of Fluorescence and Phosphorescence

Unit IV (15 Hrs)

NMR Spectroscopy - Quantum Mechanical and Classical Description - Bloch Equations - Relaxation Processes-Experimental Technique-Principle and Working of High Resolution NMR Spectrometer- Chemical Shift

Unit V (15 Hrs)

ESR Spectroscopy - Basic Principles-Experiments-ESR Spectrometer-Reflection Cavity and Microwave Bridge-ESR Spectrum-Hyperfine Structure

Books for Study:

- 1. *Molecular Structure and Spectroscopy*, G.Aruldhas, 2011, PHI Learning Private Limited.
- 2. *Fundamentals of Molecular Spectroscopy*, C. N. Banwell, 1994, Tata McGraw Hill Publishing Company Limited.

Books for References:

1. *Instrumental methods for chemical analysis*, Gurdeep R. Chatwal, Sham K.Anand, 2004, Himalaya Publishing House.

Course Code	Course Name	Category	L	T	P	Credit
20PHP15	Nuclear Physics & Elementary	Core	75	5	_	Л
20111113	Particles	Core	13)	_	7

The aim is to provide the students, the concepts of Nucleus and elementary particles and to develop skills to find the binding energy, spin and parity values for various elements.

Course Outcomes

On successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Demonstrate knowledge about number of nucleons, spin, Parity, quadrupole moment and symmetry.	K1, K2, K3
CO2	Describe and understand the concepts in Radioactivity	K1, K2, K3
CO3	Study the Various Nuclear models	K1, K2, K3
CO4	Demonstrate knowledge in Nuclear fission and fusion	K1, K2, K3
CO5	Learn about the elementary Particles	K1, K2, K3

Unit I (15 Hrs)

Nuclear Properties: Nuclear Structure- Distribution of Nuclear Charge-Nuclear Mass-Mass Spectroscopy-Mass Spectrometer-Theories of Nuclear Composition (proton-electron, proton-neutron)- Tensor Force-Static Force-Exchange Force- Nuclear energy levels - Nuclear angular momentum, parity, isospin – Nuclear magnetic dipole moment – Nuclear electric quadropole moment - Ground state of deuteron

Unit II (15 Hrs)

Radioactive Decays - Alpha Decay: Properties of α Particles-Gamow's Theory of α Decay-Geiger Nuttal Law- α Ray Energies-Fine Structure of α Rays- α Disintegration Energy-Long Range α Particles.

Beta Decay: Properties of β Particles-General Features of β Ray Spectrum-Pauli"sHypothesis-Neutrino Hypothesis-Fermi"s Theory of β Decay-Forms of Interactions and Selection Rules.

Gamma Decay: Absorption of γ Rays by Matter-Interaction of γ Rays with MatterMeasurement of γ Ray Energies-Internal Conversion.

Unit III (15 Hrs)

Nuclear Reactions and Nuclear Models: Reciprocity theorem— Breit-Wigner formula — Resonance theory — Liquid drop model — Shell model — Evidences for shell model — Magic numbers — Harmonic oscillator — Square-well potential — Spin-orbit interaction — Collective model of a nucleus.

Unit IV (15 Hrs)

Fission and Fusion Reactors: Characteristics of fission – Mass distribution of fragments – Radioactive decay processes – Fission cross-section – Energy in fission – Bohr-Wheeler's theory of nuclear fission – Fission reactors – Thermal reactors – Homogeneous reactors – Heterogeneous reactors – Basic fusion processes – Characteristics of fusion – Solar fusion – Controlled fusion reactors.

Unit V (15 Hrs)

Particle Physics: Nucleons, leptons, mesons, baryons, hyperons, hadrons, strange particles - Classification of fundamental forces and elementary particles - Basic conservation laws - Additional conservation laws: Baryonic, leptonic, strangeness and isospin charges/quantum numbers - Gell-mann--Nishijima 23 formula - Invariance under charge conjugation (C), parity (P) and time reversal (T) - CPT theorem -- Parity nonconservation in weak interactions - Eightfold way and supermultiplets - SU(3) symmetry and quark model.

Books for Study:

- 1. Nuclear Physics: An Introduction, S. B. Patel, 2009, New Age, New Delhi.(Unit II,III)
- 2. Nuclear Physics, D.C. Tayal, 2001, Himalaya Pub. House, New Delhi. (Unit I-V)

- 1. Nuclear Physics, R.C. Sharma, 2004, K. Nath and Co, Meerut.
- 2. Concepts of Nuclear Physics, B. L. Cohen, 1988, Tata McGraw Hill, New Delhi.
- 3. Elements of Nuclear Physics, M.L.Pandya, 1997, Kedar Nath, Ram Nath.

Course Code	Course Name	Category	L	T	P	Credit
20PHP16	Electromagnetic Field Theory	Core	75	5	-	4

The aim is to provide the students, the theory for the fields produced by stationary and moving charges and charged systems and hence the propagation of electromagnetic fields.

Course Outcome

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Understand the basics of electrostatics	K1, K2, K3
CO2	Understand the behavior of charges in electromagnetic field	K1, K2, K3
CO3	Know the concepts of magneto statics	K1, K2, K3
CO4	Understand and solve electromagnetic problems with the help of	K1, K2, K3
	electrodynamic potentials	
CO5	Understand the electrodynamics of radiating and relativistic	K1, K2, K3
	systems	

Unit I (15 hrs)

Electrostatics: Coulomb's law-Gauss law-differential and integral representation-Electric field-Electric potential-Method of images-Multipole expansions.

Unit II (15 hrs)

Electrostatics in macroscopic media: Potential and Field due to an Electric Dipole-Dielectric Polarization-External Field of a Dielectric Medium-Gauss' Theorem in a Dielectric-Electric Displacement Vector D-Linear Dielectrics-Relations connecting Electric Susceptibility χ_e , Polarization P, Displacement D and Dielectric Constant-Boundary Conditions of Field Vectors-Molecular Field-Clausius Mosotti Relation for Non-Polar Molecules- Electrostatic Energy and Energy Density

Unit III (15 hrs)

Magnetostatics: Biot-Savart Law - Statement-Lorentz Force Law - Definition of B-Divergence and Curl of B Magnetic Scalar Potential (derivation of expression only)-Equivalence of Small Current Loop and Magnetic Dipole-Magnetic Vector Potential (derivation of expression only).

Unit IV (15 hrs)

Electromagnetics: Equation of Continuity-Displacement Current-Derivation of Maxwel's Equations - Physical Significance - Poynting Vector - Momentum in EM Field - Electro

Magnetic Potentials-Maxwell's Equations in terms of EM Potentials - Lorentz Gauge-Coulomb Gauge - Boundary Conditions at Interfaces.

Unit V (15 hrs)

Relativistic Electrodynamics: Four Vectors-Transformation Relation for Charge and Current Densities for Electromagnetic Potentials-Covariance of Field Equations in terms of Four Vectors-Covariant Form of Electric and Magnetic Field Equations-Covariance of Electromagnetic Field Tensor-Covariant Form of Lorentz Force Law.

Books for Study:

- 1. *Electromagnetic Theory, Chopra & Agarwal*, 2016, K. Nath & Co,Educational Publishers,6th Edition. [ISBN: 978-81-924088-9-7] (Unit I-V)
- 2. *Electromagnetic Theory & Electrodynamics*, Sathya Prakash, 2004, Kedar Nath Ram Nath & co, Publishers New Edition.(Unit II, III, V)

- 1. *Classical Electrodynamics*, J.D. Jackson,2004, John Wiley Eastern 3rd Edition, [ISBN: 9971-512-50-5]
- 2. *Electrodynamics*, Gupta, Kumar & Singh, 2001, Pragati Prakashan-Meerut, [ISBN: 81-7556-303-2]

Course Code	Course Name	Category	L	T	P	Credit
20PHP19	Advanced Physics Practical - II	Core: Practical	135	-	9	4

(Examination at the end of Second Semester)

Preamble

The aim is to provide the students better practical knowledge of general Physics experiments, learn about handling of experiments and to know about different equipments used.

Any Tweleve Experiments:

- 1. e/m-Magnetron Method
- 2. Compressibility of a Liquid-Ultrasonic Method
- 3. Arc Spectra-Constant Deviation Spectrograph-Copper, Iron & Brass
- 4. Michelson Interferometer- λ , d λ and Thickness of Mica Sheet
- 5. Susceptibility-Guoy and Quincke"s Method
- 6. Hall Effect and its application
- 7. e/m-Zeeman Effect
- 8. B-H Curve-Solenoid
- 9. B-H Curve-Anchor ring
- 10. Double Slit-Wavelength Determination
- 11. G.M Counter-Characteristics
- 12. Kelvin"s Double Bridge-Determination of Very Low Resistance & Temperature Coefficient of Resistance
- 13. He-Ne Laser determination
- 14. Matlab Programming-Radioactive Decay
- 15. Matlab Programming-Numerical Integration
- 16. Matlab Programming-Double Integration
- 17. Matlab Programming-Solution of Ordinary Differential Equations
- 18. Matlab Programming-Computer Simulation of Equations of Motion for a System of Particles
- 19. Matlab Programming-Computer Simulation of 1-D and 2-D Lattice Vibrations
- 20. Matlab Programming-Computer Simulation of Kronig-Penney Model
- 21. Matlab Programming-Numerical simulation of Wave-Functions of Simple Harmonic Oscillator
- 22. Matlab Programming-Simulation of Wave Functions for a Particle in Critical Box
- 23. Matlab Programming-Solution of Diffusion Equation

Course Code	Course Name	Category	L	Т	P	Credit
20PHP20	General Electronics Practical-II	Core: Practical	135	-	9	4

(Examination at the end of Second Semester)

Preamble

The aim is to provide the students better practical knowledge of general Physics experiments, learn about handling of experiments and to know about different equipments used.

Any Ten Experiments:

- 1. Op-Amp: Simultaneous Addition & Subtraction
- 2. Op-Amp: V to I & I to V Converter
- 3. Op-Amp: Circuits Using Diodes-Half Wave, Full Wave, Peak Value, Clipper, Clamper
- 4. Op-Amp: Log and Antilog Amplifier
- 5. Op-Amp Comparator-Zero Crossing Detector, Window Detector, Time Marker
- 6. Op-Amp: Instrumentation Amplifier-Temperature Measurement
- 7. Op-Amp: Instrumentation Amplifier-Light Intensity-Inverse Square Law
- 8. IC 555 Timer Application-Monostable, Linear & Astable
- 9. A/D Converters-Any One Method
- 10. D/A Converters-Binary Weighted Method
- 11. Microprocessor: LED Interfacing
- 12. Microprocessor: Stepper Motor Interfacing
- 13. Microprocessor: Traffic Control Simulation
- 14. Microprocessor: ADC Interface-Wave Form Generation
- 15. Microprocessor: Hex Keyboard Interfacing
- 16. Microprocessor: Musical Tone Generator Interface

Course Code	Course Name	Category	L	T	P	Credit
20PHPOE1	Environmental Physics	Open Elective	45	3	ı	3

The aim is to provide the students to gain knowledge and understanding the Environmental Pollution and ControlTechniques.

Course Outcomes

On successful completion of the course, the students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1.	To gain knowledge on Sources of Pollutants	K1, K2, K3
CO2.	To Understand the types of Pollution	K1, K2, K3
CO3.	To Knowabout Solid Waste Management	K1, K2, K3
CO4.	To develop knowledge in Waste water Treatment	K1, K2, K3
CO5.	To Study about Natural Energy Sources	K1, K2, K3

Unit I (9 hrs)

Introduction - Environmental pollution - Sources of pollution - types of pollutants - Carbon Monoxide, Nitrogen Oxides, Sulphurdioxide - Particulates - Toxic Chemicals in the Environment - Effects of pollution - Preventive Measures of pollution.

Unit II (9 hrs)

 $Types\ of\ pollution\ - Air\ Pollution\ , Causes\ and\ its\ effects\ - Water\ pollution\ , Causes\ and\ its\ Effects\ , Thermal\ pollution\ , Causes\ and\ its\ effects\ , Noise\ pollution\ ,\ - Causes\ and\ its\ Effects.$

Unit III (9 hrs)

Pollution Control Techniques - Solid Waste Management - Solid Waste Disposal – Solid Waste Ocean Dumping – Solid Waste Management by Bio Technology – Organic Waste Management by composting process.

Unit IV (9 hrs)

Waste Water Treatment – Water quality Parameters – Sludge Treatment – Reverse Osmosis – Water Reuse and Recycling – Domestic Water Treatment- Disinfection methods- UV Treatment and Ozonolysis. Unit V (9 hrs)

Books for Study:

- 1. *Environmental Chemistry* (7th Edition by A.K. DE) New Age International Publishers.
- 2. *Environmental Studies* Published by Bharathiar University.

Course Code	Course Name	Category	L	T	P	Credit
20PHP21A	Bio Medical Instrumentation	Core: Elective	60	4	-	4

Preamble

The aim is to provide the students, the working principles of medical instruments and Physics behind the instruments.

Course Outcome

On successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1.	Understand and gain knowledge about human nerve systems.	K1, K2, K3
CO2.	Understand the idea about the working of ECG machine.	K1, K2, K3
CO3.	Gain the knowledge about ultrasound technology.	K1, K2, K3
CO4.	Understand the techniques behind ultrasonography.	K1, K2, K3
CO5.	Gain idea about MRI parameters.	K1, K2, K3

Unit I (12 Hrs)

Electrophysiological measurements: Cell potential genesis – Nernst relation – cell in resting state – action potential from a cell – the resultant externally recorded action potential.

Electrocardiography(ECG): Electrocardiographic planes – Einthoven triangle – bi polar and uni-polar limb lead frontal plane ECG measurements – ECG leads – precordial leads – relationship between various leads – recording of ECG waves and measurements (block diagram)

Unit II (12 Hrs)

Electroencephalogram: The brain and the central nervous system – the brain and its parts – cell potential and action – the characteristics of the normal ECG – the input electrodes – electrode construction and connections – EEG recording instruments (explanation with block diagram) – EEG wave analysis – a typical EEG machine specifications and requirements.

Unit III (12 Hrs)

ENT and ophthalmic instruments: Audiometry – Bekesy audiometer system – instruments used in opthamology - opthalmoscope – retinoscopy – Keratometer – intra ocular pressure – ultra sound in ophthalmology – components of a typical laser system in ophthalmology.

Unit IV (12 Hrs)

Ultrasonography – advantages – B scan – ultrasound scanning – ultrasonic system – probes for ultrasound – Doppler ultrasound (basic aspects) – transducer design – demodulation methods.

Unit V (12 Hrs)

Magnetic Resonance and Imaging (MRI): Magnetic intensity – magnetic resonance phenomena – the magnets – magnetic relaxation and MRI parameters – pulse sequences.

Books for Study:

1. *A Text book of Medical Instruments*, S.Anandhi, 2005, New Age International (P) Ltd., Publishers, 1st Edition.(Units I-V)

Books for Reference:

- 1. *Encyclopedia of medical devices and instrumentation*, John G. Webster et.al, Wiley-Interscience, Second Edition.
- 2. *Medical Physics and Bio medical Engineering*, B. H. Brown et, al. Institute of Physics Publishing Bristol and Philadelphia.
- 3. **Design and Development of Medical Electronic Instrumentation**, David Prutchi, Michael Norris, Wiley Interscience.
- 4. *Bio medical instrumentation*, M. Arumugam, 2002, Anuradha Publications. [ISBN: 818772112X]

Course Code	Course Name	Category	L	T	P	Credit
20PHP21B	Thin Film Physics and Crystal	Core:	60	1		4
20PHP21 B	Growth	Elective	00	4	4 -	

The aim is to provide the students deeper knowledge and understanding of thin film technique, its application and understanding the purpose of characterization studies.

Course Outcomes

On successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Gain the knowledge about thin film deposition	K1, K2, K3
CO2	Understand the concepts of different techniques	K1, K2, K3
CO3	Analyze the growth and structure of a crystal	K1, K2, K3
CO4	Deep knowledge about preparation of thin films	K1, K2, K3
CO5	Knowledge about characterization techniques	K1, K2, K3

Unit I (12 Hrs)

Preparation of Thin Film: Nature of Thin Film-Deposition Technology-Distribution of Deposit-Resistance Heating- Thermal Evaporation-Flash Evaporation

Unit II (12 Hrs)

Deposition techniques: Electron Beam Method-Cathodic Sputtering-Glow Discharge Sputtering-Low Pressure Sputtering-Reactive Sputtering-RF Sputtering-Chemical Vapour Deposition-Chemical Deposition

Unit III (12 Hrs)

Thin Film Growth Process: Epitaxy-Thin Film Structure-Substrate Effect-Epitaxial Deposit - Film growth-five stages- Nucleation theories-Incorporation of defects and impurities in films Deposition parameters and grain size-structure of thin films.

Film Thickness: Mass Methods-Optical Method-Photometry-Ellipsometry-Interferometry-Other Methods- Substrate Cleaning.

Unit IV (12 Hrs)

Crystallization Principles and Growth Techniques: Solution growth-Low and high temperatures solution growth-Slow cooling and solvent evaporation methods-Constant temperature bath as a crystallizer. Principle of gel technique-Various types of gel -Structure and importance of gel-Methods of gel growth and advantages-Melt technique- Czochralski growth-Vapor-phase growth-Physical vapor deposition-Chemical vapor deposition.

Unit V (12 Hrs)

Characterization Technique: X-ray Diffraction (XRD)-power and single crystal-Fourier transform infrared analysis-FT-Raman analysis-Elemental dispersive x-ray analysis (EDA–X)-scanning electron microscopy (SEM)-UV-VIS Spectrometer-Photo luminance (PL)

Books for Study:

- 1. *Thin Film Fundamentals*, A. Goswami, 2008, New Age, New Delhi. (Units I III)
- 2. *Elementary Crystal Growth*, K. Sangawal, 1994, Shan Publisher, UK. (Unit IV)
- 3. *Crystal Growth and Processes*, P. Santhana Ragavan, P.Ramasamy, 2000, KRU Publications, Kumbakonam. (Unit IV, V)
- 4. Crystal Growth Process, J. C. Brice, 1996, John Wiley Publications, New York.

Books for Reference:

- 1. Hand book of Thin Films Technology, L.I. Maissel and R. Clang, 1970, McGraw Hill.
- 2. Thin Films Process, J. L. Vossen and W. Kern, 1978, Academic Press.
- 3. The Materials Science of Thin Films, M. Ohring, 1992, Academic Press.
- 4. *Instrumental Methods of Analysis*, M. William and D. Steve, 1986, CBS publishers, New Delhi.
- 5. *Instrumental Methods of Analysis*, H.H. Williard, L.L. Merritt, M.J. Dean, and F.A. Settle, Sixth Edition, 1986, CBS Publishers and distributors, New Delhi.

Course Code	Course Name	Category	L	T	P	Credit
20PEP01	Laser and its Applications (Self Proficiency	Proficiency				2
20FEF01	Study)	Enhancement	_	_	_	

The aim is to provide the student the principles and applications of laser light and the Physics behind it.

Course Outcome

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1.	Study the energy levels and interactions of radiation and matter	K1, K2, K3
CO2.	Understand the concepts of excitation	K1, K2, K3
CO3.	Study about the laser beam properties	K1, K2, K3
CO4.	Study the different types of gas lasers	K1, K2, K3
CO5.	Know the applications of laser light	K1, K2, K3

Unit I

Fundamentals of Lasers: Electromagnetic radiation – energy levels – Interaction of radiation and matter – fluorescence, absorption, stimulated emission.

Laser materials: population inversion – optical pumping- excitation by electron collisions – resonant transfer of energy – resonant cavity.

Unit II

Properties of laser light: Line width – collimation – spatial profiles of laser beams – temporal behavior of Laser output – Q switched operation – mode locked operation – cavity dumping – coherence – radiance – focusing properties of Laser radiation – power.

Unit III

Gas Laser: He-Ne Laser – ionized gas laser – Molecular Laser (CO2) — Solid state lasers: Neodymium YAG Lasers- glass Lasers- Ruby Lasers.

Unit IV

Semi conductor Laser: semiconductor laser properties – Diode structures – diode doped solid state laser – Organic dye lasers – chemical lasers – X ray lasers – Tunable lasers

Unit V

Applications: – Interferometric distance measurement – velocity measurements – measurement of wire diameter – measurement of surface finish – particle diameter measurement – laser

applications in material processing – laser welding – surface treatment – drilling, cutting and marking – laser deposition of thin film – integrated circuit fabrication.

Book for study:

- 1. Laser Systems and Application, V.K.Jain, 2013, Narosa Publisher. (All Units)
- 2. Laser and Non-Linear Optics, B.B.Laud, 2011, New age Int. publisher, 3rd Edition.

Books for reference:

- 1. Semiconductor LasersI-Fundamentals, Edited by Eli Kapon, 1999, Academic press.
- 2. Solid state Lasers: A graduate text, Walter Koechner Michael Bass, 1937, Springer.
- 3. Laser & Optical Fibre Communications, P.sarah, 2008, I.K.Int publisher.
- 4. *Laser Physics*, S. Mohan, V. Arjunan, M. Selvarani, M. Kanjanamala, 2012, MJP Publishers.

SEMESTER-IV

Course Code	Course Name	Category	L	T	P	Credit
20PHP22	Condensed Matter Physics	Core	90	6		4

Preamble

The aim is to provide students knowledge and understanding the Crystal structure and crystal defects and to advance skills for analyzing Heat capacity of the electron gas and Magnetism

Course Outcomes

On successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Understand the fundamentals of reciprocal lattice	K1, K2, K3
CO2	Describe and understand the concepts of crystal defects	K1, K2, K3
CO3	Demonstrate knowledge in electron theory of metals.	K1, K2, K3
CO4	Study the lattice vibration, the conductivity of superconductor and	K1, K2, K3
	the importance of different materials in a variety of applications.	
CO5	Demonstrate knowledge in theories of magnetism	K1, K2, K3

Unit I (18 Hrs)

Reciprocal lattices: Vector development of reciprocal lattice – Properties of the reciprocal lattice – Reciprocal lattice to bcc lattice and fcc lattice.

Unit II (18 Hrs)

Crystal Defects: Classification of defects - Points defect - The Schottky defect - The Frenkel defect -colour centers - F center - other colour centers - Production of colour centers by X rays and practice irradiation — Defect and energy state. Dislocations - Slip and plastic deformation - Shear strength of single crystals - Edge dislocation - Screw dislocation - Stress field around an edge dislocation

Unit III (18 Hrs)

Lattice Vibrations, Semiconductors & Free Electron Theory: Vibrations of One Dimensional Diatomic Linear Lattice -Acoustic and Optical Branches Phonon State-Energy levels and density of orbitals – Motion in magnetic fields – Hall effect – Thermal conductivity of metals – Nearly free electron model –Electron in a periodic potential – Semiconductors – Band gap – Effective mass – Intrinsic carrier concentration.

Unit IV (18 Hrs)

Dielectrics, Ferroelectrics and Superconductivity: Macroscopic electric field – Local electrical field at an atom –Polarizability – Clausius- Mossotti equation – Ferroelectric crystals – Polarization Catastrophe – Ferroelectric domains.Occurrence of Superconductivity – Meissner effect – Thermodynamics of Superconducting transition – London equation – Coherence length – BCS theory – Flux Quantization – Type-I and Type-II Superconductors –Josephson tunneling effect- DC and AC Josephson effect – SQUID.

Unit V (18 Hrs)

Magnetism: Quantum theory of Paramagnetism — Paramagnetic susceptibility of conduction electrons — Hund's rules- Kondo effect. Ferroelectric order — Curie point and the exchange integral — Temperature dependence of saturation magnetization — Magnons — Thermal excitation — Ferromagnetic order — Antiferromagnetic order — Antiferromagnetic Magnons — Ferromagnetic domains — Origin of domains — Coercive force and hysteresis.

Books for study:

- 1. *Introduction to Solid State Physics*, Kittel. C. 2005, 8th Edition, Willey India (P) Ltd., New Delhi.(Units III, IV & V)
- 2. *Fundamentals of Solid State Physics*, Saxena. B.S., R. C. Gupta and P. N. Saxena, 2012, 16th edition, Pragati Prakashan, Meerut.(Units I & IV)
- 3. *Solid State Physics*, S. L. Guptha, V. Kumar, Ninth Edition, K. Nath & Co, Meerut. [ISBN:978-81-924088-7-3]

Books for Reference:

- 1. *Solid State Physics*, A.J. Dekkar, revised edition, 2000, Macmillan India Ltd., New Delhi.
- 2. *Principles of Solid State*, Keer. H.V. 1st edition, 2002, New age international, New Delhi.
- 3. *Solid State Physics*, Pillai S.O., 2005, 4th Edition, New Age International Publishers Ltd.

Course Code	Course Name	Category	L	T	P	Credit
20PHP23	Thermodynamics and Statistical	Core	90	6	-	4
	Mechanics					

The aim is to provide students a deeper knowledge and understanding of Thermodynamics, particle distribution and statistics

Course Outcomes

On successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Gain the knowledge about energy and radiation	K1, K2, K3
CO2	Understand the concept of canonical ensemble, statistical and	K1, K2, K3
	thermal equilibrium	
CO3	Analyze the micro and macrostate distribution	K1, K2, K3
CO4	Deep knowledge about quantum statistics of Bose Einstein and	K1, K2, K3
	Fermi Dirac statistics	
CO5	Knowledge about application of quantum statistics in Bose	K1, K2, K3
	Einstein condensation and Ising model	

Unit I (18 Hrs)

Thermodynamics and Radiation: Second law of thermodynamics- Entropy and Second law of thermodynamics- Entropy and Disorder- Thermodynamic Potential and Reciprocity relation-Thermodynamic Equilibria- Chemical Potential- Blackbody radiation- Planck's Radiation law.

Unit II (18 Hrs)

Basic Concepts of Statistical Physics: Phase space- Concept of ensemble- Micro canonical ensemble-Canonical ensemble- Grand Canonical ensemble- Density distribution in phase space-Liouvilles theorem- Postulate of equal apriori probability- Statistical equilibrium- Thermal equilibrium- Mechanical equilibrium-Particle equilibrium-Connection between Statistical and thermodynamic quantities.

Unit III (18 Hrs)

Classical Distribution Law: Microstates and Macro states-Classical Maxwell-Boltzmann distribution law- Evaluation of constants, α and β - Maxwell's law of Distribution of velocities-Principle of equi-partition of energy- Gibbs paradox- Partition function and its correlation with thermodynamics quantities

Unit IV (18 Hrs)

Quantum Statistics: Indistinguishability and quantum statistics- Statistical weight and apriori probability- Identical particle's and symmetry requirements- Bose Einstein's Statistics- Fermi Dirac Statistics- Results of three statistics- Thermodynamic interpretation of parameter's α and β - Blackbody radiation and Planck radiation- Specific heat of solids: Dulong and Petit's law-Einstein's Theory- Debye theory.

Unit V (18 Hrs)

Application of Quantum Statistics: Energy and pressure of ideal Bose Einstein gas- Bose Einstein condensation- Liquid helium- Energy and pressure of ideal Fermi Dirac gas- Free electron model and electronic emission- Onsager relations- Fluctuation in Energy, Pressure, Volume & Enthalpy- The Ising model-Bragg William Approximation- One dimensional Ising model.

Books for study:

1. *Statistical mechanics*, Gupta & Kumar, 2003, Pragati prakashan, Meerut. (All Units)

Books for Reference:

1. *Elements of Statistical Mechanics*, Miss Kamal Singh, S.P.Singh, 1999, S.Chand & Company Ltd.

Course Code	Course Name	Category	\mathbf{L}	T	P	Credit
20PHP24	Electronic Communication	Core	90	6	_	4
	Systems					

Preamble

The aim is to provide the students good understanding of radar systems and types of modulation used in electronic communication systems and the operation of different types of microwave devices.

Course outcome

On successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Explain antenna systems and wave propagation	K1, K2, K3
CO2	Understand the microwave generators and how to generate	K1, K2, K3
	microwaves.	

CO3	Gain knowledge about Radar performance	K1, K2, K3
CO4	It explains about frequency and phase modulation	K1, K2, K3
CO5	It describes fiber optics and its applications	K1, K2, K3

Unit I (18 Hrs)

Antennas & Wave Propagation : Terms and Definition -Effect of Ground on Antenna-Grounded $\lambda/4$ Antenna Ungrounded $\lambda/2$ Antenna Antenna Arrays-Broadside and End Side Arrays-Antenna Gain-Directional High Frequency Antennas-Sky Wave Propagation-Ionosphere-Ground Wave Propagation.

Unit II (18 Hrs)

Microwaves: Microwave Generation-Multicavity Klystron -Reflex Klystron-Magnetron-Travelling Wave Tubes (TWT) -MASER.

Unit III (18 Hrs)

Radar System: Elements of a Radar System-Radar Equation-Radar Performance Factors-Radar Transmitting Systems-Radar Antennas-Duplexers-Radar Receivers and Indicators-Pulsed Systems-Other Radar Systems

Unit IV (18 Hrs)

Communication Electronics: Analog and Digital Signals –Modulation –Types of Modulation-Amplitude modulation theory –Frequency spectrum of the AM wave –Representation of AM – Power relations in the AM wave –Generation of AM –Basic requirements-Description of frequency and phase modulation –Mathematical representation of FM –Frequency spectrum of the FM wave -Effects of noise on carrier.

Unit V (18 Hrs)

Optical Fibres: Propagation of Light in an Optical Fibre-Acceptance Angle-Numerical Aperture-Step and Graded Index Fibres-Optical Fibre as a Cylindrical Wave Guide-Wave Guide Equations-Wave Equations in Step Index Fibres-Fibre Losses and Dispersion-Applications.

Books for study:

- 1. *Electronic Communication System*, George Kennedy & Davis, 1989, Tata McGraw Hill 4th edition.[ISBN:978-0-07-107782-8] (Units I IV)
- 1. *Optical fiber and fiber optic communication systems*, S. K. Sarkar, 2007, S. Chand Publication. (Unit V)

Books for References:

2. *Electronic Communications*, Sanjeeva Gupta, 2002, Khanna Publishers.