P.K.R. ARTS COLLEGE FOR WOMEN (AUTONOMOUS)

(Accredited with 'A' grade by NAAC - Affiliated to Bharathiar University, Coimbatore)

GOBICHETTIPALAYAM - 638 476

DEPARTMENT OF MATHEMATICS

MASTER OF SCIENCE IN MATHEMATICS

Syllabus

For the candidates admitted from the Academic Year 2021-2022 and onwards

Under CBCS PATTERN

MASTER OF SCIENCE - MATHEMATICS

Programme Scheme and Scheme of Examinations (For students admitted from 2021-2022 & onwards)

Scholastic Courses:

Category / Part	Compone	nt Course Cou	le Title of the Course	Contact Hrs/ week	Exam Duration hrs.	r	Max.Ma	rks	
Car				Contac	Exam	CIA	ESE	Total	
	Core: I	1.011	SEMESTER - I					1. 18	
Ш	Core. 1	21MAP01	Advanced Algebra	6	3	50	50	100	5
111	Core :11	21MAP02	Real Analysis	6	3	50	50	100	5
Ш	Core : III	21MAP03	Ordinary Differential Equations	6	3	50	50	100	4
Ш	Core : IV	21MAP04	Classical Mechanics	5	3	50	50	100	4
III	Core:V Elective : I	21MAP05A/	Numerical Analysis/	5	3	50	50	100	3
	Licetive , I	21MAP05B	Optimization Techniques						
Ш	Core : VI Practical	21MAP06	Programming in Python Practical	2	3	50	50	100	1
			TOTAL	30				600	22
			SEMESTER - II			L			
Ш	Core :VII	21MAP07	Complex Analysis	6	3	50	50	100	5
Ш	Core : VIII	21MAP08	Partial Differential Equations	5	3	50	50	100	4
ш	Core : IX	21MAP09	Measure Theory and Integration	5	3	50	50	100	4
П	Core :X	21MAP10	Differential Geometry	5	3	50	50	100	4
П	Core : XI Elective : II	21MAP11A / 21MAP11B	Mathematical Statistics/ Programming in C++	5	3	50	50	100	3
	Core : XII Elective : II Practical	21MAP12A/ 21MAP12B	Mathematical Software – I (SPSS) – Practical/ Programming in C++ -	2	3	50	50	100	1
	Fractical		Practical						

	V Ability Enhancement	21AEPMA01	Cyber Security		2	3		-	100	100	T
			TOTA	AL	30				-	700	2
	Core : XIII	21MAP13	SEMESTER - III								
			Topology		6	3	50	5	0	100	
	0	21MAP14	Theory of Numbers	-	6	3	50	5		100	4
Ш	Core : XVI	21MAP15	Operator Theory		6	3	50	5(1	100	4
III	Practical	21MAP16	Mathematical Software – II (R Software) - Practical		3	3	50	50		00	
ш	Core :XVII Open Elective	***	Offered for students of other programmes / departments	3		3	50	50	1	00	2
V	Proficiency		Industrial Mathematics								2
	Enhancemen	21PEPMA01	(Self Study)	E		3	-	100	10	00	2
III	Core :XVIII Elective : III	21MAP17A/ 21MAP17B	Graph Theory / Integral Transforms	6		3	50	50	10	0	3
			TOTAL	30		-			70		-
			SEMESTER – IV	-					70		21
111	Core :XIX	21MAP18	Functional Analysis	6	3		50	50	100	5	_
111	Core: XX	21MAP19	Mathematical Methods	6	3	-	50	50	100	4	
III	Core :XXI	21MAP20	Fluid Dynamics	6	3		50	50	100	4	-
III).	Core : XXII	21MAP21/	Project Work & Viva Voce	6	3		50	50	100	4	-
III	Core : XXIII Elective : IV	21MAP22A / 21MAP22B	Fuzzy Logic and Fuzzy Sets / Actuarial Mathematics	6	3		50	50	100	3	-

20 500 TOTAL 30 Online Course / Learning Object Repository (LOR) 2 Competency SEMSTER I-IV V Enhancement 2 SEMESTER I - IV Certificate Course 90 Total Credits - 90 Total Marks -2500 & R Java KJol 22 R. JAYALAKSHMI. MSc. M.Phil. PGDCA. Associate Professor & Head Department of Mathematics, P.K.R. Arts College for Women (Autonomous) Gobichettipalayam - 638 476.

SYLLABUS

(For students admitted from 2021-2022 & onwards)

SEMESTER - I

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	TYPE	CODE	TITLE		
PART - III	CORE : I	21MAP01	ADVANCED	72	5
			ALGEBRA		

Contact Hours per Week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
First	Ι	50	50	100

Preamble

To enable the students to learn and gain knowledge about algebraic structures, theory of groups, rings, fields and linear transformations.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE LEVEL
NUMBER		LEVEL
CO1	Recall the basic definitions in theory of Groups, Rings, Fields and linear transformations.	K ₁
CO2	identify the difference between algebraic and transcendental extensions and to find the minimal polynomial for algebraic elements over a field.	K ₂
CO3	apply the concept of Groups, Rings, Fields and linear transformations to find the dimensions.	K ₃
CO4	analyze the results in Groups, Rings, Fields and linear transformations.	K ₄
CO5	Evaluate the problems using permutations,	K5

	polynomials and linear transformations	
CO6	Create some examples in Groups, Rings, Fields and	K ₆
	linear transformations.	
		I

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	1	1	1
CO5	9	9	3	3	0	0	0
CO6	9	9	3	0	0	0	0
Total	54	54	42	39	22	22	10
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	3.33	3.25	3.55	3.63	2.24
Percentage							
of COs							
contribution							
to POs							

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: GROUP THEORY

Another counting principle – Sylow's theorem .

UNIT II: RING THEORY

Euclidean rings - A particular Euclidean ring - Polynomial rings - Polynomials over the rational field.

6

(15 Hours)

(15 Hours)

7

UNIT III: FIELDS

Extension Fields – Roots of polynomials.

UNIT IV: FIELDS (Continuation)

Elements of Galois theory – Finite Fields.

UNIT V: LINEAR TRANSFORMATIONS

Canonical forms: Triangular form – Trace and Transpose – Hermitian, unitary and normal Transformations.

TEXT BOOK:

Herstein.I.N (Reprint 2017)– "Topics in Algebra", 2nd Edition, Wiley Indian Pvt.Ltd, New Delhi-110002.

CHAPTER	SECTION
II	2.11 ,2.12
III	3.7 to 3.10
V	5.1,5.3
V	5.6
VII	7.1.
VI	6.4, 6.8 and 6.10
	II III V V VII

REFERENCE BOOKS:

- Fraleigh.J.B.(2003) "A First Course in Abstract Algebra",3rd Edition Narosa Publishing House, New Delhi.
- 2. Artin.M (1991)- "Algebra", Prentice-Hall, Englewood Cliff.
- 3. Hungerford.T.W.(1974) "Algebra", Springer, New York.

BOOKS FOR REFERENCE:

1.https://youtu.be/_PFLMe3TASQ

- 2.<u>https://youtu.be/wKdYjOYqYGM</u>
- $3. \underline{https://en.m.wikipedia.org/wiki/Sylow_theorems \#: \sim: text = In\% 20 mathematics\% 2C\% 20 specifica$

11y%20in%20the,a%20given%20finite%20group%20contains.

4.<u>https://youtu.be/GrxybUy3UrU</u>

(15 Hours)

(12 Hours)

(15 Hours)

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	TYPE	CODE	TITLE		
PART - III	CORE : II	21MAP02	REAL	72	5
			ANALYSIS		

Year	Semester	Internal Marks	External Marks	Total Marks
First	Ι	50	50	100

Preamble

To enable the students to learn and gain knowledge about Riemann Stieltjes Integral, Sequence and Series of functions and Functions of Several Variables.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE LEVEL
NUMBER		
CO1	recall the definitions of lower and upper bound, Riemann Stieltjes Integral, point wise , uniform convergence, equi-continuous families of functions, dimension, vector space, invertible operators and determinants.	K ₁
CO2	demonstrate the basic concepts of the series of real numbers, necessary conditions of R.S. integral, uniform convergence, uniformly closed algebra, uniform closure, linear transformation and differentiation of integrals.	K ₂
CO3	apply the necessary conditions of R.S. Integral, the concepts of Uniform convergence, solution of integrals, linear transformations for finding the solution of integrals convergence criteria of a certain function and dimensions respectively.	K3

CO4	analyze the concept of Riemann Stieltjes Integral sequence and series of functions, functions of several variables.	K ₄
CO5	evaluate the problems based on Riemann Stieltjes integral, sequence and series of functions and Derivatives of Higher Order.	K ₅
CO6	construct the necessary conditions of R.S. Integral, Generalisation of Stone-Weierstrass theorem and functions of several variables.	K ₆

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	1	1
CO2	9	9	9	9	1	2	1
CO3	9	9	9	9	3	2	1
CO4	9	9	9	9	3	1	1
CO5	9	9	9	9	3	2	1
CO6	9	9	9	9	3	2	1
Total	54	54	54	54	16	10	
Contribution							
of COs to							
POs							6
Weighted	4.12	4.14	4.28	4.50	2.58	1.65	1.34
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: THE RIEMANN STILTJES INTEGRAL (15	Hours)
Definition and Existence of the Integral – Properties of the integral – Integration	and
Differentiation –Integration of vector valued function .	
UNIT II: SEQUENCE AND SERIES OF FUNCTIONS (15	Hours)
Uniform convergence - Uniform convergence and continuity –Uniform converg	gence and
integration.	
UNIT III:SEQUENCE AND SERIES OF FUNCTIONS (Continued) (15 H	Hours)
Uniform convergence and differentiation –Equicontinuous families of functions	5 —
The Stone Weirstrass theorem.	
UNIT IV: FUNCTIONS OF SEVERAL VARIABLES (15 H	Iours)
Linear transformation –Contraction principle.	

UNIT V:FUNCTIONS OF SEVERAL VARIABLES (Continued....) (12 Hours)

Inverse function theorem – Implicit function theorem – Determinants – Differentiation of Integrals.

TEXT BOOKS:

Rudin.W–(2117) "Principles of Mathematical Analysis", Third edition, McGraw Hill Education Pvt.ltd, New York.

UNIT	CHAPTER	PAGE NUMBER
I	6	121-134
II	7	143-152
III	9	152-165
IV	3	204-211, 220-221
V	4	221-228, 231-238

REFERENCE BOOKS:

1. RobertG.Bartle and Donald R.Sherbert (2110), Third Edition,"Introduction to Real Analysis", John Wiley and sons.

2. RudinW(2112), "Real and complex Analysis", McGraw-Hill, New York, 3rd Edition.

BOOKS FOR REFERENCE:

1.<u>https://ocw.mit.edu/courses/mathematics/18-100c-real-analysis-fall-2012/</u>

2.<u>http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF</u>

3.http://www.math.louisville.edu/~lee/RealAnalysis/

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
PART - III	CORE -	21MAP03	ORDINARY	72	4
	III		DIFFERENTIAL		
			EQUATIONS		

Year	Semester	Internal Marks	External Marks	Total Marks
First	Ι	50	50	100

Preamble

To enable the students to learn various methods to solve systems of linear differential equations and non-linear initial value problems.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Recall the fundamental concepts of power series solution, existence and uniqueness of solutions of systems of linear differential equations and non linear IVPs.	K1
CO2	Explain series solutions, existence and uniqueness results, oscillations of equations.	K ₂
CO3	Apply the various methods to solve linear differential equations.	K ₃
CO4	Analyze the applicability of the results in systems of linear differential equations and the oscillations of second order differential equations.	K4
CO5	Determine the power series solutions, the solutions of systems of linear differential equations and oscillations of second order differential equations.	K5

CO6	formulate the research problem into a model by	K ₆
	using differential equations.	

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	9	9	9	9	3
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	3	1
CO6	9	9	9	9	3	3	1
Total	54	54	54	54	36	36	14
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	5.94	3.13
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: SOLUTIONS IN POWER SERIES

(15 Hours)

Second order linear equations with ordinary points – Legendre equation and Legendre polynomials – Second order equations with regular singular points – Bessel function

UNIT II:SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

(15 Hours)

Systems of first order equations – Existence and uniqueness theorem – Fundamental matrix.

UNIT III: SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS(contd..) (15 Hours)

Non-homogeneous linear systems – Linear systems with constant coefficients – Linear systems with periodic co-efficients.

UNIT IV:EXISTENCE AND UNIQUENESS OF SOLUTIONS (15 Hours)

Successive approximations – Picard's theorem - Non-uniqueness of solution – Continuation and dependence on initial conditions, Existence of solutions in the large.

UNIT V:OSCILLATIONS OF SECOND ORDER EQUATIONS (12 Hours)

Fundamental results – Sturm's comparison theorem – Elementary linear oscillations.

Comparison theorem of Hille-Wintner – Oscillations of x''+a(t)x=0.

TEXT BOOK:

S.G.Deo, V.Lakshmikanthan and V.Raghavendra "Ordinary Differential Equations", Second Edition- Seventh reprint 2104, Tata McGraw-Hill Publishing company Limited, New Delhi.

UNIT	CHAPTER	SECTION
Ι	III	3.1 – 3.5
П	IV	4.1 – 4.5
III	IV	4.6 – 4.8
IV	V	5.1 – 5.7
V	VIII	8.1 – 8.5

REFERENCE BOOKS:

- Coddington.E.A. andLevinson.N., (1955), "Theory of Ordinary Differential Equations", McGraw Hill, New York.
- George F.Simmons(1974)," Differential Equations with applications And Historical Notes", Tata McGraw Hill, New York.
- 3. V.Dharmaiah" Introduction to theory of Ordinary Differential Equations", PHI Learning Private Limited.

BOOKS FOR REFERENCE:

1. <u>https://nptel.ac.in/courses/111/104/111104031/#</u>

2 https://nptel.ac.in/courses/122/107/122107037/

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	ТҮРЕ	CODE	TITLE		
PART - III	CORE - IV	21MAP04	CLASSICAL	60	4
			MECHANICS		

Year	Semester	Internal Marks	External Marks	Total Marks
First	Ι	50	50	100

Preamble :

To enable the students to learn and gain knowledge about mechanical systems, canonical transformations, Lagrange and Poisson brackets and principles of Hamilton, Jacobi, Euler and Lagrange

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Recall the notions of configuration space, generalized co- ordinates, degrees of freedom, natural system, ignorable co- ordinates, stationary value, canonical transformation, Lagrange and Poisson brackets.	K1
CO2	Classify Hamilton's principle, Euler-Lagrange equations, Hamilton-Jacobi theory and different types of constraints, work, energy and momentum.	\mathbf{K}_2
CO3	Use Jacobi integral, Routhian procedure, Hamiltonian procedure, generating functions to find the differential equations of motion.	K ₃
CO4	Critique all the theoretical techniques.	K ₄
CO5	Evaluate the equations of Lagrange, Hamilton, Hamilton-Jacobi,	K ₅

	linear, rotational and rolling motions and canonical tranformations	
CO6	Construct brachistochrone problem, geodesic problem , generating function and bilinear covaraint under the canonical transformation.	K ₆

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	7	7
CO2	9	9	9	9	3	1	1
CO3	9	9	9	9	3	1	1
CO4	9	9	9	9	3	1	1
CO5	9	9	9	9	0	0	0
CO6	9	9	3	3	0	0	0
Total	54	54	48	48	18	10	10
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	3.80	4.00	2.90	1.65	2.24
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: INDRODUCTORY CONCEPTS

(14 Hours)

Mechanical system – Generalized coordinates –Constraints – Virtual work – Energy and momentum.

UNIT II: LAGRANGE'S EQUATIONS	(14 Hours)
Derivations of Lagrange's Equations-Examples-Integrals of motion.	
UNIT III: HAMILTON'S EQUATIONS	(12 Hours)
Hamilton's Principle – Hamilton's equations.	
UNIT IV: HAMILTON – JACOBI THEORY	(08 Hours)
Hamilton's principle function – Hamilton – Jacobi equation.	
UNIT V: CANONICAL TRANSFORMATIONS	(12 Hours)

Differential forms and generating functions –Lagrange and Poisson brackets.

TEXT BOOK:

Greenwood.D.T. (1997) – "Classical Dynamics", Dover Publication, New York.

UNIT	CHAPTER	SECTION
I	1	1.1 - 1.5
II	2	2.1 – 2.3
III	4	4.1 – 4.2
IV	5	5.1 - 5.2
V	6	6.1,6.3

REFERENCE BOOKS:

- 1. Gupta.S.C,Kumar.V.Sharma.H.V.(2015)-"Classical Mechanics" K.K Mittal for PragattiPrakashan,Meerut.
- 2. Gupta.A.S.(2009)-"Calculus of Variation" PHI Learning pvt.ltd.Newdelhi.

BOOKS FOR REFERENCE:

- 1. <u>https://bsc.hcverma.in/course/cm1</u>
- 2. http://www-f1.ijs.si/~ramsak/KlasMeh/KlasMehA.pdf
- 3. <u>https://www.youtube.com/watch?v=XEPC8nQsiH8</u>

CATEGORY	COURSE	COURSE	COURSE	CONTACT	CREDIT
	ТҮРЕ	CODE	TITLE	HOURS	
PART - III	CORE - V	21MAP05A	NUMERICAL	60	3
	ELECTIVE		ANALYSIS		
	- I				

Year	Semester	Internal Marks	External Marks	Total Marks
First	Ι	50	50	100

Preamble :

To enable the students to learn and gain knowledge about Interpolation,numerical integration and Solution of ordinary differential equations.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the basic definitions of interpolation, numerical integration, Numerical Solution of Ordinary differential equations and Partial differential equations.	K ₁
CO2	explain the concepts of interpolation ,numerical integration, Euler methods and predictor –corrector methods	K ₂
CO3	apply the different method to solve the problems on interpolation ,numerical integration, Numerical Solution of Ordinary differential equations and Partial differential equations.	K ₃

CO4	analyze the numerical solution of Euler and modified Euler method and predictor –corrector methods.	K ₄
CO5	evaluate the problems based on interpolation , numerical integration, Euler methods and modified Euler method.	K5
CO6	Construct the problem and find the solution by using Gauss interpolation formulae.	K ₆

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	3	3	3	0
CO5	3	3	3	3	1	1	1
CO6	3	3	3	1	1	1	1
Total	42	42	42	34	26	14	11
Contribution							
of COs to							
POs							
Weighted	3.21	3.22	3.33	2.83	4.20	2.31	2.46
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: CENTRAL DIFFERENCE INTERPOLATION FORMULA (10 Hours)

Central Difference table – Gauss's forward interpolation formula - Gauss's Backward interpolation formula – Stirling's formula- Bessel's formula.

UNIT II: INTERPOLATION

(10 Hours)

Legrange's Interpolation formula - Inverse Interpolation

Numerical Integration: Numerical Integration – The Trapezoidal Rule – Simpson's $1/3^{rd}$ and Simpson's $3/8^{th}$ Rules.

UNIT III: SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS (15 Hours)

Taylor series method –Euler and Modified Euler methods –Rungekutta methods (Fourth Order)–Multistep methods –Milne's method –Adams Moulton method.

UNIT IV: NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

(15 Hours)

(10 Hours)

(Solutions of Elliptic, Parabolic and Hyperbolic partial differential equations)

Elliptic Equation –Laplace's equation on a rectangular region –Iterative methods for Laplace equation –Parabolic Equation-Hyperbolic Equation .

UNIT V: CHARACTERISTIC VALUE PROBLEMS

Characteristic value problems –Eigen values of a matrix by Iteration –The power method-Jacobi Methods for finding Eigen values & Eigen vectors .

TEXT BOOK:

1. Sastry S.S (2005) - "Introductory Methods of Numerical Analysis ", Prentice-Hall of India Private limited, New Delhi-110001.

2.Dr.P.Kandasamy,Dr.K.Thilagavathi,Dr.K.Gunavathi(2005)-"Numerical Methods", S.Chand & Company LTD, New Delhi-110055.

UNIT	BOOK	CHAPTER	SECTION
Ι	Ι	III	3.7.1-3.7.3
II	II	IX	8.7-8.9
			9.7-9.16

			Omit 9.10,9.12
III	Ι	VII	7.2, 7.4, 7.4.2, 7.5-
			7.6
IV	II	XII	12.5-12.10
V	II	XIII	13

REFERENCE BOOKS:

- 1. Chapra.S.C. and Raymond.P.C. (2000) "Numerical Methods for Engineers", Tata McGraw Hill, New Delhi.
- Burden.R.L. and Douglas Faires.J. (1989) "Numerical Analysis", Fourth Edition, P.W.S.Kent Publishing Company, Boston.

BOOKS FOR REFERENCE:

- 1. https://youtu.be/PQfosTWlqC4
- $2.\ https://www.slideshare.net/niravbvyas/numerical-methods-oridnary-differential-equations-2$
- 3. https://youtu.be/UWqVvR8SmDA

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
PART - III	CORE – V ELECTIVE - I	21MAP05B	OPTIMIZATION TECHNIQUES	60	3

Year	Semester	Internal Marks	External Marks	Total Marks
First	Ι	50	50	100

Preamble :

To enable the students to learn and gain knowledge about Network Scheduling, Games and Strategies, various kinds of Simulations, Transportation and Assignment models and Information Theory.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Recall the definitions of Activities, Players, Payoff Matrix, Value of the Game, balanced and unbalanced transportation problems, Hungarian Assignment Method, Simulation Models, Network Scheduling and Entropy.	K ₁
CO2	Explain the concepts of Activities, Players, Payoff Matrix, Value of the Game, balanced and unbalanced transportation problems, Hungarian Assignment Method, Simulation Models, Network Scheduling and Entropy.	K ₂

CO3	Apply the concepts of the Maximin or Minimax Principles, tests of optimality, simulation models, Network scheduling, joint and conditional entropies.	K ₃
CO4	Compare the concepts of Pure Strategies, Mixed Strategies, Looping, Dangling, Joint and Conditional Entropies.	K ₄
CO5	Evaluate the problems based on Games and strategies, Value of the Game, Critical Path, Event – Type Simulation, MODI Method and Hungarian Assignment Method, Joint and Conditional Probability.	K5
CO6	Construct the Network and Critical Path	K ₆

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING	COURSE ARTICUL	ATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	3	3	3	0
CO5	3	3	3	3	1	1	1
CO6	3	3	3	1	1	1	1
Total	42	42	42	34	26	14	11
Contribution							
of COs to							
POs							
Weighted	3.21	3.22	3.33	2.83	4.20	2.31	2.46
Percentage							
of COs							

contribution				
to POs				

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: GAMES AND STRATEGIES

Games and Strategies – Introduction – Two – Person Zero – Sum Games – Some Basic Terms – The Maximin – Minimax Principle – Games Without Saddle Points – Mixed Strategies – Graphical solution of 2xn and mx2 games.

UNIT II: TRANSPORTATION AND ASSIGNMENT PROBLEM (10 HOURS)

Solution of a Transportation problem-Finding an IBFS-Test for Optimality-MODI Method.

Assignment problem: Introduction-Mathematical Formulation of the Problem-Solution methods of Assignment Problem-Special Cases in Assignment Problem.

UNIT III: SIMULATION

Simualtion - Introduction - Why Simualtion? - Process of Simualtion -

Simulation Models - Event – Type Simulation - Generation of Random Numbers – Monte-Carlo simulation.

UNIT IV: NETWORK SCHEDULING

Network Scheduling by PERT/CPM – Introduction – Network: Basic Components – Logical Sequencing – Rules of Network Construction - Concurrent Activities - Critical Path Analysis – Probability considerations in PERT - Distinction between PERT and CPM.

UNIT V: INFORMATION THEORY

Introduction – A Measure of Information-Entropy –The Expected Information-Entropy as a Measure of Uncertainty-Some properties of entropy Function- The Communication System-Channel Probabilities-Joint and conditional Entropies.

TEXT BOOK:

KantiSwarup, Gupta P.K., Man Mohan (2016) – "Operations Research", Fifteenth Thoroughly Revised Edition ,Sultan Chand and Sons, Educational Publishers, New Delhi.

UNIT CHAPTER SECTION

(10 HOURS)

(10 Hours)

(15 Hours)

(15 Hours)

Ι	XVII	17.1 – 17.6
II	X &	10.8-10.13
	X1	11.1-11.4
III	XXII	22.1 – 22.7
IV	XXV	25.1 - 25.8
V	XXX	30.1 – 30.8 (omit 30.4)

REFERENCE BOOK:

HamdyA.Taha (2008) – "Operations Research – An Introduction", Eighth Edition, PHI Learning Pvt. Ltd, New Delhi.

BOOKS FOR REFERENCE:

- 1. <u>https://youtu.be/xy-x9KGMAlY</u>
- 2. <u>https://youtu.be/ezSx8OyBZVc</u>
- 3. https://www.slideshare.net/SonamJain4/game-theory-10323319
- 4. <u>https://www.slideshare.net/KesavartiniiBalaKrisnain/simulation-powerpoint-lecture-notes</u>

CA	ΓEGORY	COURSE	COURSE	COURSE TITLE	CONTACT	CREDIT
		TYPE	CODE		HOURS	
PA	RT - III	CORE – VI	21MAP06	PROGRAMMING	24	1
		PRACTICAL		IN PYTHON -		
				PRACTICAL		

Year	Semester	Internal Marks	External Marks	Total Marks
First	Ι	50	50	100

Preamble

To enable the students to learn and gain knowledge about Python programming language.

Course Outcomes

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Recall the basic concepts of Python language to	K ₁
	solve the mathematical problems	
CO2	Illustrate Python language to get the solution of	K ₂
	mathematical concepts	
CO3	Applying Python programming to get the execation	K ₃
	of mathematical problems	
CO4	Examine the coding of Python software in cheating	K4
	the classes and objects, Correlation coefficient	
	Probability Measres of Central tendency,	
	temperature conversion, finding roots ,R-K method,	
	Ordinary differential equations and distance	
	calculation	
CO5	Assess the Python software to find the solution of	K ₅
	mathematical problems	
CO6	Develop the Python software to solve the	K ₆

mathematical problems	

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	3	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	1	1	1
CO5	9	9	9	9	1	1	1
CO6	9	9	9	9	1	1	0
Total	54	54	54	54	12	12	11
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	1.93	1.98	2.46
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

LIST OF PROGRAMS

All the following listed programs have to be executed and recorded

- 1. Write a program to create a class and object in Python.
- 2. Write a program to find correlation coefficient between the variables.
- 3. Write a program to find the probability of a prime number appearing when a 21 sided die is rolled.
- 4. Write a program to find standard deviation for the given set of values.
- 5. Write a program to calculate the mean, median and mode using Python.
- 6. Write a program to convert temperature from Celcius to Fahrenheit and vice versa.
- 7. Write a program for finding the roots of quadratic function.

- 8. Write a program to solve the initial value problem using Runge Kutta method.
- 9. Write a program to solve ordinary differential equation using Python.
- 10. Write a Python program to calculate distance between two points using latitude and longitude.

BOOKS FOR REFERENCE:

- 1. <u>https://www.tutorialgateway.org/python-program</u>
- 2. <u>https://realpython.com/python-math-module/</u>
- 3. <u>https://www.geeksforgeeks.org/mathematical-functions-python-set-1-numeric-functions/</u>
- 4. <u>https://www.udemy.com/course/math-with-python/</u>

SEMESTER – II

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	ТҮРЕ	CODE	TITLE		
PART - III	CORE - VII	21MAP07	COMPLEX	72	5
			ANALYSIS		

Contact Hours per Week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	50	50	100

Preamble :

To enable the students to learn the concepts of analytic function.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the results in conformal mapping, complex	K ₁
	integration and series and product developments.	
CO2	explain the concepts of analytic functions, Cauchy's	K ₂
	theorem, Cauchy's integral formula, power series	
	expansion and mapping.	
CO3	apply the theorems and results to solve problems	K ₃
	involving complex functions.	
CO4	analyze the local properties, zeros, power series	K4
	expansion for analytic functions and conformal	
	mapping.	
CO5	determine the power series expansion, convergence	K ₅
	of infinite products of an analytic function and	
	residues.	
CO6	construct the series and product development of	K ₆
	complex functions.	

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	1	1
CO6	9	9	9	9	1	0	0
Total	54	54	54	54	23	13	13
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	3.71	2.14	2.91
Percentage							
of COs							
contribution							
to POs							

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: INTRODUCTION TO THE CONCEPT OF ANALYTIC FUNCTION (20 Hours)

Limits and continuity – Analytic functions – Polynomials – Rational functions. Conformality: Arcs and closed curves – Analytic functions in regions – Conformal Mapping – Length and Area – Linear Transformations: The Linear group – The Cross ratio – Elementary Riemann Surfaces.

UNIT II: COMPLEX INTEGRATION

(20 Hours)

Line Integrals - Rectifiable Arcs – Line Integrals as Functions of Arcs – Cauchy's theorem for a rectangle - Cauchy's theorem in a disk- Cauchy's Integral formula: The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives - Removable singularities, Taylor's Theorem – Zeros and Poles – The Local Mapping– The Maximum principle – Chains and cycles.

The Riemann Mapping Theorem: Statement and Proof - Boundary Behaviour - Use of

TEXT BOOK:

Ahlfors L.V. - (2114), "Complex Analysis", 4th Reprint, McGraw Hill Education (India) Pvt.Ltd New York.

REFERENCE BOOK: RuelV.Churchill(1990) – "Complex Variables and Applications", Fifth Edition, McGraw

- Hill International Editions.

BOOKS FOR REFERENCE:

1.https://www.coursera.org/learn/complex-analysis

2.https://complex-analysis.com/

3.https://mathworld.wolfram.com/ComplexAnalysis.html

UNIT III: THE CALCULUS OF RESIDUES

The Residue theorem – The Argument principle – Harmonic functions: Definitions and basic Properties – The Mean value property – Poisson's Formula.

UNIT IV: SERIES AND PRODUCT DEVELOPMENTS

Weierstrass's Theorem - The Taylor Series - The Laurent Series - Partial fractions and Factorization: Partial Fractions - Infinite Products - Canonical Products.

UNIT V: MAPPING THEOREM

the reflection principle - Analytic Arcs - Conformal mapping of Polygons: The Behaviour at an angle – The Schwarz – Christoffel Formula – Mapping on a rectangle.

CHAPTER UNIT **SECTION** Ι 2 1.1 - 1.43 2.1 – 2.4, 3.1, 3.2 and 3.4 Π 4 1.1 - 1.5, 2.1 - 2.3, 3.1 - 3.4,4.1 Ш 5.1 - 5.2, 6.1 - 6.34 IV 5 1.1 - 1.3, 2.1 - 2.31.1 - 1.4, 2.1 - 2.3v 6

(10 Hours)

(12 Hours)

(10 Hours)

CATEGORY	COURSE	COURSE	COURSE	CONTACT	CREDIT
	TYPE	CODE	TITLE	HOURS	
PART - III	CORE -	21MAP08	PARTIAL	60	4
	VIII		DIFFERENTIAL		
			EQUATIONS		

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	50	50	100

Preamble :

To enable the students to learn and gain knowledge about Initial and boundary- value problems, Methods for solving Partial Differential Equations.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Recall the basic concepts and various types of second order PDE.	K ₁
CO2	discuss the classification of second order PDE, Cauchy problem, existence and uniqueness results of initial boundary – value problems, methods to find Green's function.	K ₂
CO3	apply the method of separation of variables, method of characteristics, Green's function to solve initial boundary – value problems.	K ₃
CO4	analyze the general solutions, existence and uniqueness of solutions of initial boundary – value problems.	K ₄
CO5	determine the solutions of second order liner PDE.	K ₅

CO6	formulate physical problems as PDE and construct	K ₆
	the solutions.	

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create. **CO-PO MAPPING (COURSE ARTICULATION MATRIX)**

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	9	9	9	9	3
CO4	9	9	9	9	3	3	1
CO5	9	9	9	9	3	3	1
CO6	9	9	9	9	3	3	1
Total	54	54	54	54	36	36	12
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	5.94	2.69
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: MATHEMATICAL MODEL

The Classical equation – The vibrating string – The vibrating membrane – Conduction ofheat in solids. Classification of second order equations: Second order equations in two independent variables - Cannonical forms - Equations with constant coefficients - General solution.

UNIT II: THE CAUCHY PROBLEM

The Cauchy problem - Cauchy - Kowlalewskaya theorem -Homogeneous wave equation - Initial - Boundary value problems - Non-homogeneous boundary conditions - Nonhomogeneous wave equation.

34

(12 Hours)

(12 Hours)

UNIT III: METHOD OF SEPARATION OF VARIABLES

Separation of variables – The vibrating string problem – Existence and Uniqueness of solution of the vibrating string problem. The heat conduction problem – Existence and uniqueness of solution of the heat conduction problem – The Laplace and beam equations.

UNIT IV: BOUNDARY VALUE PROBLEMS

UNIT

Ι

Π

Ш

IV

Boundary value problems - Maximum and minimum principles - Uniqueness and continuity theorems – Dirichlet problems for a circle – Dirichlet problems for a circular annulus - Neumann problem for a circle Drirchlet problem for a rectangle.

UNIT V: GREEN'S FUNCTIONS

The Dirac delta function – Properties of Green's function – Method of Green's functions -Dirichlet problem for the Laplace operator – Method of images – Method of Eigen functions. **TEXT BOOK:**

TynMyint. U with Lokenath Debnath (2107) – "Linear Partial Differential Equations for Scientists and Engineers", 4th Edition, Birkhusar Boston, New York.

SECTION

4.1 - 4.4

7.1 - 7.6

9.1 - 9.7

5.1 – 5.5, 5.7

3.1 – 3.5 (omit 3.4)

11.1 – 11.8 (omit 11.6)

	V	XI
REFERENCE BOO	OKS	

1. Evans.L.C., (2103) - "Partial Differential Equations", AMS, Providence, R I.

CHAPTER

III

IV

V

VII

IX

2. Sneddon.I.N. (1957) - "Elements of Partial Differential Equations", McGraw Hill, London.

BOOKS FOR REFERENCE:

- 1. https://www.youtube.com/watch?v=bPPWp65qpIA
- 2. https://www.youtube.com/watch?v=BmTFbUAOeec&list=PLGCj8f6sgswntUil8yzohR_
- 3. https://nptel.ac.in/courses/111/104/111104031/#

(12Hours)

(12 Hours)

(12 Hours)

35

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	ТҮРЕ	CODE	TITLE		
PART - III	CORE -	21MAP09	MEASURE	60	4
	IX		THEORY AND		
			INTEGRATION		

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	50	50	100

Preamble :

To enable the students to learn and gain knowledge about the concepts of measurable sets and measurable spaces.

Course Outcomes

CO Number	CO Statement	Knowledge Level
CO1	recall the concepts of Lebesgue measure in integration, differentiation of measurable sets and product measures.	K ₁
CO2	Explain the properties of Lebesgue measurable sets and product measures.	K ₂
CO3	apply the Lebesgue measure, integration, differentiation, product measure in measurable sets.	K ₃
CO4	Analyze the integration and differentiation of measurable functions over general measure spaces, measurable sets and product measures.	K4
CO5	Evaluate the Lebesgue measure , Lebesgue Integration, Lebesgue Differentiation and product	K5

	Measures.	
CO6	Construct the measurability of Lebesgue measure in integration, differentiation and in product measures.	K ₆

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	3	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	3	1
CO6	9	9	9	9	3	1	0
Total	54	54	54	54	18	16	13
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	2.90	2.64	2.91
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I :Lebesgue Measure

(12 Hours)

Introduction – Lebesgue Outer Measure – The σ – Algebra of Lebesgue Measurable Sets – Outer and Inner Approximation of Lebesgue Measurable Sets – Countable Additivity, Continuity and the Borel–Cantelli Lemma.

UNIT II :Lebesgue Integration

The Riemann Integral – The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure – The Lebesgue Integral of a Measurable Nonnegative Function –The General Lebesgue Integral.

UNIT III : Differentiation and Integration

Continuity of Monotone Functions – Differentiability of Monotone Functions: Lebesgue's Theorem – Functions of Bounded Variations: Jordan's Theorem.

UNIT IV :Integration over General Measure Spaces (12 Hours)

Measurable Functions – Integration of Nonnegative Measurable Functions– The Radon– Nikodym Theorem.

UNIT V : The Construction of Particular Measures

Product Measures: The Theorems of Fubini and Tonelli.

TEXT BOOK :

H.L. Royden, P.M. Fitzpatrick (2014) - "Real Analysis", 4th Edition, PHI Learning Private Limited, Delhi.

UNITS	CHAPTER	SECTIONS	PAGE No
Ι	2	2.1–2.5	29-47
II	4	4.1–4.4	68-89
III	6	6.1–6.3	107-118
IV	18	18.1–18.2, 18.4	359-371, 381-
11	10	10.1-10.2, 10.4	385
V	20	20.1	414-422

REFERENCE BOOKS :

- Bartle R.G (1976) "Elements of Real Analysis", 2nd Edition, John Wiley and Sons, New York.
- 2. RudinW(1986) "Real and complex Analysis", 3rd Edition,McGraw-Hill, New York.
- Tom M.Apostal(2002)- "Mathematical Analysis", 2nd Edition, Narosa Publishing House, New Delhi.

(12 Hours)

(12 Hours)

(12 Hours)

BOOKS FOR REFERENCE:

- 1. http://users.metu.edu.tr/eduard/TEACH/GC/MeasureTheory_II/MTLI.pdf
- 2. https://library.oapen.org/bitstream/id/ce19d94d-b8b6-420f-9e69-d9f565703c26/1007045.pdf
- 3. https://www.whitman.edu/Documents/Academics/Mathematics/2017/Wang.pdf
- 4. https://www.uio.no/studier/emner/matnat/math/MAT2400/v11/RealAnalCh4.pdf

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
PART - III	CORE - X	21MAP10	DIFFERENTIAL GEOMETRY	60	4

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	50	50	100

Preamble

To enable the students to learn and gain knowledge about the space curves, fundamental forms and geodesic on a surface.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recollect the basic concepts of theory of space curves and surfaces	K ₁
CO2	explain the fundamental ideas in differential geometry	K ₂
CO3	use the formulae and theoretical ideas of differential geometry in distinct curvatures.	K ₃
CO4	analyze the nature of space curves on various surfaces, intrinsic and non-intrinsic properties and Geodesics	K ₄
CO5	evaluate the problems on theory of space curve , Fundamental forms , intrinsic and non-intrinsic properties and Geodesics	K ₅
CO6	Construct the various cuve Equations ,Fundamental Equations of Surface Theory, Gauss quationsWeingarten equations and Mainardi-Codazzi equations	K ₆

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	3	3
CO6	9	9	9	9	0	3	0
Total	54	54	54	54	15	36	33
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	2.42	5.94	7.39
Percentage							
of COs							
contribution							
to POs							

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: THEORY OF SPACE CURVES

Introduction – Representation of space curves – Unique parametric representation of a space curve – Arc-length – Tangent and osculating plane – Principle normal and binormal – Curvature and torsion –Contact between curves and surfaces.

UNIT II : THEORY OF SPACE CURVES (CONTINUATION) (15 Hours)

Osculating circle and osculating sphere – Locus of centre of spherical curvature – Tangent surfaces – Involutes and Evolutes –Spherical indicatrix- Intrinsic equations of space curves – Fundamental existence theorem for space curves.

UNIT III: THE FIRST FUNDAMENTAL FORM

The first fundamental form – Local intrinsic properties of a surface: Introduction - Definition of a surface – Nature of points on a surface – Representation of a surface – Curves on

(15 Hours)

(10 Hours)

surfaces –Metric on a surface –The first fundamental form– Families of curves – Orthogonal trajectories – Double family of curves.

UNIT IV : THE SECOND FUNDAMENTAL FORM (10 Hours)

The Second Fundamental form and local non-intrinsic properties of a surface: Introduction –The Second fundamental form-Classification of points on a surface-Principal curvatures- Lines of curvature.

UNIT V: GEODESIC ON A SURFACE

Normal property of Geodesics –Gaussian curvature-The Fundamental Equations of Surface Theory: Introduction – Tensor notations –Gauss equations –Weingarten equations-Mainardi-Codazzi equations.

TEXT BOOK:

Somasundaram.D (2010)- "Differential Geometry", Fourth Reprint, Narosa Publishing House Pvt. Ltd., Chennai.

UNIT	CHAPTER	SECTION
Ι	I	1.1 - 1.7, 1.10
II	I	1.11 - 1.13 , 1.15 – 1.17
III	II	2.1 - 2.5, 2.9-2.13
IV	IV	4.1 - 4.5
V	III	3.5, 3.12, 5.1-5.5

BOOKS FOR REFERENCE:

1. <u>https://youtu.be/qQr1aTNwwuU</u>

2.<u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwijzNC0jZfzAhXk4jgGHZkHDsgQFnoECBkQAQ&url=https%3A%2F%2Fwww.slideserve.com%2Ffawn%2Fdifferential-geometry-for-curves-and-surfaces&usg=AOvVaw01NT_DiB3ovtmR77udV3Tv</u>

(10 Hours)

3.<u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ve d=2ahUKEwiMg_LyjZfzAhXBwjgGHb_oCTcQwqsBegQIKhAB&url=https%3A%2F%2Fwww .youtube.com%2Fwatch%3Fv%3D4fB0VfKZRXM&usg=AOvVaw2uIMJy-UceDwNTEsBVPKuA</u>

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
	CODE VI				2
PART - III	CORE – XI ELECTIVE	21MAP11A	MATHEMATICAL STATISTICS	60	3
	- II				

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	50	50	100

Preamble

To enable the students to learn and gain knowledge about Probability, Mathematical Expectations, various Probability Distributions and Density Functions.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Recall the definitions of Sample Spaces, Random Variables, Moments, Moment – Generating functions.	K ₁
CO2	Explain the concepts of Sample Spaces, Events, Random Variables, Moments, Moment – Generating functions.	K ₂
CO3	Apply the concepts of Sample Spaces, Random Variables, moments for solving problems based on it.	K ₃
CO4	Compare the concepts of Sample Spaces, Sample Points, Discrete Random Variables and Continuous	K ₄

	Random Variables.	
CO5	Evaluate the Mean, Variance, Moment - Generating Functions for different kinds of distributions.	K ₅
CO6	Construct the examples for Sample Spaces, Random Variables and for different kinds of distributions like Uniform Distribution, Bernoulli Distribution, Binomial Distribution, Negative Binomial Distribution, Geometric Distribution, gamma Distribution, Exponential Distribution and Chi – Square Distribution.	K ₆

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	9	3	1
CO4	9	9	9	9	3	3	1
CO5	9	9	9	9	3	0	1
CO6	9	9	9	9	3	0	1
Total	54	54	54	54	36	12	10
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	1.98	2.24
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I : THEORY OF PROBABILITY

Introduction - Sample spaces - Sample point - Discrete and Continuous sample spaces -Events - Venn diagrams - The probability of an Event - Rules of Probability.

UNIT II : PROBABILITY DISTRIBUTIONS

Random variables - Discrete and Continuous Random Variables - Probability Distributions - Distribution function - Continuous Random Variables - Probability density functions.

UNIT III : MATHEMATICAL EXPECTATION

Introduction - The expected value of a Random Variable - Moments - Chebyshev's theorem - Related Examples.

UNIT IV : SPECIAL PROBABILITY DISTRIBUTIONS (12 Hours)

Introduction - The Discrete Uniform Distribution - The Bernoulli Distribution -Bernoulli trial (Repeated trials) – The Binomial Distribution – Moment Generating function of Binomial Distribution – The Negative Binomial and Geometric Distributions.

UNIT V: SPECIAL PROBABILITY DENSITIES

Introduction - The Uniform Distribution - Mean and Variance - The Gamma Distribution – Exponential Distribution – The Chi-Square Distribution.

TEXT BOOK :

Irwin Miller and Marylees Miller(2012) - "Mathematical Statistics", Seventh Edition, Pearson Publications, New Delhi.

UNIT	CHAPTER	SECTION
Ι	II	2.1 – 2.5
II	III	3.1 – 3.4
III	IV	4.1 – 4.4

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

[IV	V	5.1 – 5.5
	V	VI	6.1 - 6.3

REFERENCE BOOK :

Kapur.J.N and Saxena.H.C. (2011)- "Mathematical Statistics", 20thEdition, S.Chand&company, Ram Nagar, New Delhi.

BOOKS FOR REFERENCE:

- 1. <u>https://libguides.reading.ac.uk</u>
- 2. <u>https://stats.stackexchange.com</u>
- 3. <u>https://zu.libguides.com</u>

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
	CODE VI			<u></u>	
PART - III	CORE – XI ELECTIVE	21MAP11B	PROGRAMMING IN C++	60	3
	- II				

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	50	50	100

Preamble

To enable the students to learn and gain knowledge about C++ Programming such as Tokens, Expressions, Control Structure, Classes and Objects.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the basic concepts of programming in C++	K ₁
CO2	discuss the concepts of Object Oriented Programming, Functions, Classes, Operators, Constructors and Destructors.	K ₂
CO3	identify the syntax of declaration of variable, reference variable, control structure, inline function, function prototyping, functions, operators, classes, Constructors and Destructors.	K ₃
CO4	analyze the concepts OOPs, functions, classes and object, operators, constructor and destructors.	K ₄
CO5	evaluate the values of mathematical function by using various functions, classes, constructor and	K5

	destructors.	
CO6	construct the program by using inline function,	K ₆
	friend function, control structure, functions,	
	operators, classes, Constructors and Destructors.	

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	9	3	1
CO4	9	9	9	9	3	3	1
CO5	9	9	9	9	3	0	1
CO6	9	9	9	9	3	0	1
Total	54	54	54	54	36	12	10
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	1.98	2.24
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT - I : TOKENS, EXPRESSIONS AND CONTROL STRUCTURE (12 HOURS)

Basic Concept of Object Oriented Programming : Basic Concept of OOPS - Benefits of OOP – Application of OOP.

Tokens, Expressions and Control Structure: Introduction – Tokens – Keywords – Identifiers and Constants – Basic Data Types – User Defined Data Types – Derived Data Types –

Declaration of Variables – Dynamic Initialization of Variables – Reference Variables – Operators - Control Structures.

UNIT-II: FUNCTIONS IN C++

Functions in C++: Introduction – The Main Function – Function Prototyping – Call by Reference- Return by Reference - Inline Functions - Default Arguments - const Arguments -Recursion - Function Over Loading - Friend and Virtual Functions - Math Library Functions.

UNIT - III : CLASSES AND OBJECTS

Classes and Objects: Introduction - C Structures Revisited - Specifying a Class -Defining Member Functions – A C++ Program with Class – Making An Outside Function Inline -Nesting Of Member Functions - Private Member Functions - Arrays Within A Class - Arrays of Objects – Objects as Function Arguments – Friend Functions.

UNIT – IV : CONSTRUCTORS AND DESTRUCTORS (12 HOURS)

Constructors and Destructors: Introduction – Constructors – Parameterized Constructors - Multiple Constructors in a Class - Constructors with Default Arguments -Dynamic Initializations of Objects - Copy Constructor - Destructors.

UNIT - V : OPERATOR OVERLOADING

Operator Overloading: Introduction – Defining Operator Overloading – Overloading Unary Operators – Overloading Binary Operators – Overloading Binary Operators Using Friends

- Manipulating of Strings Using Operators - Rules for Overloading Operators.

TEXT BOOK

E. Balaguruswamy, Object-Oriented Programming with C++, Seven Edition, Tata McGrawHill Publishing Company Limited.

UNIT	CHAPTER	SECTION
I	1 & 3	1.5 – 1.8, 3.1 – 3.8, 3.11 - 3.14 and 3.25
II	4	4.1 – 4.12

(12 HOURS)

(12 HOURS)

(12 HOURS)

III	5	5.1 - 5.15
IV	6	6.1 -6.11
V	7	7.1 – 7.8

REFERENCE BOOKS :

- 1. Programming with C++ by D. Ravichandran, -Tata McGraw Hill publishing company limited, New Delhi.
- 2. Object Oriented Programming with C++ by S.S.Vinod Chandra, New age.

BOOKS FOR REFERENCE:

- 1. <u>https://www.w3schools.com/cpp/cpp_getstarted.asp</u>
- 2. <u>https://www.doc.ic.ac.uk/~wjk/c++Intro/</u>
- 3. <u>https://www.udemy.com/course/introduction-to-programming-c-cpp/</u>
- 4. <u>https://developerinsider.co/introduction-to-cpp-cpp-programming/</u>

CATEGORY	COURSE	COURSE	COURSE TITLE	CONTACT	CREDIT
CALEGONI			COURSE IIILE		CREDIT
	TYPE	CODE		HOURS	
PART - III	CORE – XII	21MAP12A	MATHEMATICAL	24	1
	ELECTIVE -		SOFTWARE – I		
	II		(SPSS) -		
	PRACTICAL		PRACTICAL		

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	50	50	100

Preamble

To enable the students to learn and gain knowledge about SPSS such as Mean, Median, Mode, different types of distributions.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recognize the commands provided in the SPSS environment	K ₁
CO2	demonstrate the charts and diagrams in statistics	K ₂
CO3	classify the various kinds of distribution such as binomial distribution, Poisson distribution and normal distribution	K ₃
CO4	analyze the data which is used to find the mean, median, mode, standard deviation, variance and range	K4
CO5	estimate the probability distribution by using various types of distributions.	K5
CO6	create the SPSS database which is used to fit the	K ₆

straight line and plot the exponential curves.	

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	1	1
CO6	9	9	9	9	3	1	1
Total	54	54	54	54	36	32	32
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	5.28	7.17
Percentage							
of COs							
contribution							
to POs							

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

LIST OF PROGRAMS

All the following listed programs have to be executed and recorded

- 1. Create a SPSS database and to find Mean.
- 2. Create a SPSS database and to find Median and Mode.
- 3. Find the Standard deviation, Variance and Range by using SPSS database.
- 4. Find the Standard error of Mean, Maximum and Minimum by using SPSS database.
- Create a SPSS database and to find both Pearson's and Spearman's correlation in both 1- Tailed and 2-Tailed tests.
- 6. Create the SPSS database to fit the Straight line and plot the Exponential curve using

Regression.

- 7. Create a SPSS database and present that data through charts and diagrams.
- 8. Find the probability distribution by using Binomial distribution in SPSS.
- 9. Find the probability distribution by using Poisson distribution in SPSS.
- 10. Find the probability distribution by using Normal distribution in SPSS.

BOOKS FOR REFERENCE:

- 1. https://www.ibm.com/in-en/analytics/spss-statistics-software
- 2. <u>https://www.lib.sfu.ca/find/research-tools/spss-resources</u>
- 3. https://libguides.muw.edu/psychandfamilyscience/spss

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
PART - III	CORE – XII	21MAP12B	PROGRAMMING	24	1
	ELECTIVE -		IN C++		
	II				
	PRACTICAL				

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	50	50	100

Preamble

To enable the students to learn and gain knowledge about C++ Programming such as finding the values for data, different types of functions.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recognize the commands provided in the C++ environment	K ₁
CO2	demonstrate the data values	K ₂
CO3	classify the various kinds of function	K ₃
CO4	analyze the data which is used to find the different function values.	K ₄
CO5	estimate the data values by using different function	K ₅
CO6	create the C++ program which is used find values of data	K ₆

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	1	1
CO6	9	9	9	9	3	1	1
Total	54	54	54	54	36	32	32
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	5.28	7.17
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

LIST OF PROGRAMS

All the following listed programs have to be executed and recorded

1. DISTANCE CONVERSION PROBLEM:

Create two classes DM and DB which store the value of distances. DM store the value of distances. DM stores distances in meters and centimeters in DB in feet and inches. Write a Program that can create the values of the class objects and add one object DM with another object DB. Use a friend function to carry out addition operation. The object that stores the result may be DM object or DB object depending on the units in which results are required. The display should be in the order of meter and centimeter and feet or inches depending on the order of display.

2. OVERLOADING OBJECTS:

Create a class FLOAT that contains one float data member overload all the four arithmetic operators so that operate on the objects of FLOAT.

3. OVERLOADING CONVERSIONS:

Design a class polar which describes a pant in a plane using polar Co-ordinates radius and angle. A point in polar Co-ordinates is as shown below. Use the overloader + operator to add two objects of polar. Note that we cannot add polar values of two points directly. This requires first the conversion. Points into rectangular Co-ordinates and finally converting the result into polar Co-ordinates. You need to use following trigonometric formulas. X = r * cos (*a*); Y = r * sin (a); $a = tan^{-1}(\frac{Y}{x})$; r = sqrt (X * X + Y * Y);

4. OVRELOADING MATRIX:

Create a class MAT of size M*N. Define all possible matrix operations for MAT type objects. Verify the identity. $(A-B)^2 = A^2 + B^2 - 2*A*B$

5. REA COMPUTATION USING DERIVED CLASS:

Area of rectangle = X * Y

Area of triangle = $\frac{1}{2} * X * Y$

6. VECTOR PROBLEM:

Define a class for vector containing scalar values. Apply overloading concepts for vector addition, Multiplication of a vector by a scalar quantity, replace the values in a position vector.

7. INHERITANCE:

Create three classes alpha, beta and gamma, each containing one data member. The class gamma should be inherited from both alpha and beta. Use a constructor function in the class gamma to assign values to the data members of all the classes. Write a program to print the data members of all the three classes.

8. INLINE FUNCTION:

Create two inline functions that can return the multiplication and division for two data members.

9. STATIC DATA MEMBER:

Write a program to illustrate the use of static data member.

10. ARRAY OF OBJECT:

Create a class employee and illustrate the use of object array.

BOOKS FOR REFERENCE:

1. <u>http://biet.ac.in/pdfs/C++%20LAB%20MANUAL.pdf</u>

2. http://www.cppforschool.com/assignments.html

3. https://www.programiz.com/cpp-programming/library-function/cstdlib/labs

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
PART IV	ABILITY ENHANCEMENT	21AEPMA01	CYBER SECURITY	24	2

Year	Semester	Internal Marks	External Marks	Total Marks
First	II	-	100	100

Preamble:

To understand the basics of cyber security and the security threats in day-to-day activities.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
Number		
CO1	Recall the basic concepts of information security and its types	K1
CO2	Explain cyber space issues and cyber security measures	K2
CO3	Apply security measures to prevent ourselves from threats in social media	К3
CO4	Identify various risks and threats in cyber space	K4
CO5	Appraise the performance of social media, security issues and their measures	K5
CO6	Compose the real time examples using case studies	K6

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	3
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	3	3
CO6	9	9	9	9	3	1	1
Total	54	54	54	54	36	34	28
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	5.61	6.27
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT: I INFORMATION SECURITY

History of Information Security - Need for Security-**Types of Security:** Physical Security – Network Security –Personal Security –Operation Security –Communication Security - Information Security Threats.

UNIT: II INTRODUCTION TO CYBER SECURITY (5 Hours)

Cyber Security: Objectives- Roles- Differences between Information Security and Cyber Security. **Cyber Security Principles:** Confidentiality- Integrity – Availability.

(5 Hours)

UNIT: III RISKS & VULNERABILITIES

Risk Meaning: Risk Management –Problems of Measuring Risk -Risk Levels-Risk Analyzes-Risk Assessment –Response to Risk Terminology- **Threats:** Components of Threats-Types of Threats- **Vulnerabilities:** Computing System Vulnerabilities –Hardware Vulnerabilities-Software Vulnerabilities-Data Vulnerabilities-Human Vulnerabilities.

UNIT: IV SOCIAL MEDIA

Introduction to social media: What, Why –Pros and cons- Security issues in social media: Mail-Facebook-Whatsapp-Twitter-Preventive and control measures.

UNIT: V CASE STUDY

(4 Hours)

(5 Hours)

Impact of social media: Education -Business- Banking-Mobile –Human Life- Present generation-Indian scenario.

BOOKS FOR REFERENCE:

- 1. https://m.youtube.com/watch?v=o6pgd8gLFHg
- 2. https://m.youtube.com/watch?v=3rl4ZjZpcHU
- 3. https://blog.barkly.com/10-fundamental-cybersecurity-lessons-for-beginners
- 4. https://5social media security risk and how to avoid them.html
- 5. https://10 cyber security twitter profiles to watch.html
- 6. https://cyber security in banking 4 trends to watch in 2017.html
- 7. https://gmail hacking security tips-indian cyber security solutions.html
- 8. https://why social media sites are the new cyber weapons of.html
- 9. EBook: A complete guide to Staying Ahead in the Cyber Security Game

(5 Hours)

SEMESTER – III

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	TYPE	CODE	TITLE		
PART - III	CORE -	21MAP13	TOPOLOGY	72	5
	XIII				

Contact Hours per Week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
Second	III	50	50	100

Preamble

To enable the students to learn and gain knowledge about Topological spaces,

connectedness, Compact Spaces, Countability and Completely regular spaces.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the basic definitions of Topological spaces,	K ₁
	connectedness, Compact Spaces, Countability and	
	Completely regular spaces.	
CO2	explain the concepts of Topological spaces,	K ₂
	connectedness, Compact Spaces, Countability and	
	Completely regular spaces.	
CO3	apply the concepts of Continuous Functions,	K ₃
	Compact Spaces, Urysohn Metrization Theorem and	
	Tychonoff Theorem in topological spaces.	
CO4	analyze the separation properties, convergent	K ₄
	sequence, metric space in the general theory of	
	topological space.	
CO5	justify the relationship between compact spaces,	K ₅

	connected spaces and regular spaces.	
CO6	construct the examples for Topological spaces, connectedness, Compact Spaces, and Countability.	K ₆

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	3	1	3
CO4	9	9	9	9	1	1	1
CO5	9	9	3	3	0	1	0
CO6	9	9	3	0	0	0	0
Total	54	54	42	39	22	15	10
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	3.33	3.25	3.55	2.47	2.24
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: TOPOLOGICAL SPACE

Topological spaces – Basis for a Topology – The Order Topology – Product Topology – Closed sets and Limit Points – Continuous Functions.

UNIT II: CONNECTEDNESS

Metric Topology-Connected Spaces –Connected sets in the real line –Components and path components -Local connectedness.

(15 Hours)

(15 Hours)

UNIT III:COMPACT SPACE

Compact Spaces –Compact subspaces of the real line-Limit Point Compactness – Localcompactness.

UNIT IV: COUNTABILITY

The Countability Axioms – The Separation Axioms – Normal spaces – The Urysohn Lemma – The Urysohn Metrization Theorem .

UNIT V: THE TYCHONOFF THEOREM (15 Hours)

The Tychonoff Theorem – Completely regular spaces – The stone-Cech Compactification.

TEXT BOOK:

James R. Munkres (2005) - "Topology", 2nd edition, Prentice Hall of India Private Limited, New Delhi.

UNIT	CHAPTER	PAGE NUMBER
Ι	II	75 - 111
II	II,III	119 – 133,147 - 162
III	III	163 - 185
IV	IV	189 - 218
V	V	230 - 241

REFERENCE BOOKS:

- J. Dugundji, (1966) "Topology", Allyn and Bacon, (Reprinted in India by Prentice Hall of India Private Limited)
- George F. Simmons,(1963) "Introduction to Topology and Modern Analysis", McGraw Hill Book Company.

(15 Hours)

(12 Hours)

BOOKS FOR REFERENCE:

- 1. <u>https://youtu.be/PytSjbqDizE</u>
- 2. <u>https://en.m.wikipedia.org/wiki/Topology</u>
- 3. <u>https://youtu.be/WjbTliK734g</u>

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	TYPE	CODE	TITLE		
PART - III	CORE -	21MAP14	THEORY OF	72	4
	XIV		NUMBERS		

Year	Semester	Internal Marks	External Marks	Total Marks
Second	III	50	50	100

Preamble :

To enable the students to learn and gain knowledge about Number theory.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	bring back all the concepts in theory of numbers	K ₁
CO2	demonstrate Congruences,Quadratic reciprocity and Arithmetic functions.	K ₂
CO3	apply conceptual knowledge and formulae in number theory to solve the problems.	K ₃
CO4	critique the proof and context of theorems in Divisibility,Primes, Congruences,Quadratic reciprocity and Arithmetic functions.	K ₄
CO5	evaluate the solutions of congruences ,Jacobi symbol problems and Arithmetic functions.	K ₅
CO6	manipulate simple research problems on Divisibility,Primes, Congruences,Quadratic reciprocity and Arithmetic functions	K ₆

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	9	9	9	1	3	1
CO5	9	9	9	9	1	3	1
CO6	9	9	9	9	1	1	1
Total	54	54	54	54	18	34	30
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	2.90	5.61	6.72
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: INTRODUCTION TO THE CONCEPT OF NUMBERS(15 Hours)Introduction- Divisibility-Primes.

UNIT II: CONGRUENCES

Congruences-Solutions of congruences- Congruences of Degree 1- The functions $\phi(n)$ -Congruences of higher degree-Prime power moduli-Prime modulus.

UNIT III: CONGRUENCES

Primitive roots and power residues-Congruences degree 2- Prime modulus-Power Residues-Number theory from an algebraic view point - Multiplicative groups-Rings and fields.

UNIT IV:QUADRATIC RECIPROCITY

Quadratic residues- Quadratic reciprocity – The Jacobi Symbol.

(15 Hours)

(15 Hours)

(15 Hours)

UNIT V:ARITHMETIC FUNCTIONS

Greatest integer function - Arithmetic functions – The Moebius Inversion formula – The multiplication of arithmetic functions .

TEXT BOOK:

Ivan Nivan and HerbertsZucherman (2013) – "An Introduction to Theory of Numbers", Fifth edition, Wiley Indian PvtLtd., New Delhi-110002.

UNIT	CHAPTER	SECTIONS
Ι	Ι	1.1-1.3
II	II	2.1-2.3,2.6 & 2.7
III	II,III	2.8-2.11
IV	III,IV	3.1 - 3.3
V	IV	4.1-4.3

REFERENCE BOOKS:

- Apostol.T.M.(1995)– "Introduction to Analytic Number Theory", FirsteditionSpringer Verlag.
- Gareth Jones .A. & Mary Jones J.(1998) "Elementary Number Theory" -Springer publications.

BOOKS FOR REFERENCE:

1.https://youtu.be/19SW3P_PRHQ

2.https://www.youtube.com/watch?v=xQfsIBj5ZZg

3.https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ve d=2ahUKEwjVjJi2hpfzAhU_gtgFHbj5AeIQFnoECCUQAQ&url=https%3A%2F%2Fhome.sand iego.edu%2F~aboocher%2Fwritings%2FNumberTheoryNotes.pdf&usg=AOvVaw34q6dy78kdn 49fprv3iIJq

(12 Hours)

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	TYPE	CODE	TITLE		
PART - III	CORE -	21MAP15	OPERATOR	72	4
	XV		THEORY		

Year	Semester	Internal Marks	External Marks	Total Marks
Second	III	50	50	100

Preamble

To enable the students to learn and gain knowledge about Hilbert spaces, Spectral Theory and Banach Algebra.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the basic definitions of Spectral theory,	K ₁
	infinite dimensional spectral theory, Banach Algebra,	
	Hilbert spaces and operators.	
CO2	explain the basic concepts of Spectral theory, infinite	K ₂
	dimensional spectral theory, Banach Algebra, Hilbert	
	spaces and operators.	
CO3	apply the concepts of operator theory in Hilbert	K ₃
	space and operator, spectral theory, Infinite	
	Dimensional Spectral Theory and banach algebra.	
CO4	examine the properties Hilbert space and operator,	K4
	spectral theory, Infinite Dimensional Spectral	
	Theory and banach algebra.	
CO5	establish the adjoint Operator-Self adjoint operator,	K ₅
	The adjoint Operator-Self adjoint operator, Spectrum	
	of an Operator on a finite dimensional Hilbert Space	
CO6	construct the examples for Hilbert space, the adjoint	K ₆

Operator-Self adjoint operator and Normal operator

K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	3	3	3
CO4	9	9	9	3	3	1	1
CO5	9	9	3	3	1	1	1
CO6	3	3	3	1	1	1	0
Total	54	54	54	54	36	22	22
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	3.63	4.93
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: HILBERT SPACE

Introduction- Definitions and Examples-Hilbert space and its basic properties-Applications of the parallelogram law-Orthogonal Complements-The Orthogonal Decomposition Theorem- Orthonormal sets.

UNIT II: OPERATORS ON HILBERT SPACES

Introduction-The adjoint Operator-Self adjoint operator-Normal operator-Unitary operator-Projection operators.

(15 Hours)

UNIT III: SPECTRAL THEORY

Introduction-Linear operators and Matrices on a Finite Dimensional Hilbert Space-Spectrum of an Operator on a finite dimensional Hilbert Space H-The finite Dimensional Spectral Theorem-Compact Operators.

UNIT IV: INFINITE DIMENSIONAL SPECTRAL THEORY

Infinite Dimensional Spectral Theory-Normal and Self- Adjoint operators(Spectral Theory)-Compact Self –Adjoint and Normal Operators (Spectral Theory)- The Infinite Dimensional Spectral Theorem(Compact Normal Operator).

UNIT V: BANACH ALGEBRA

Introduction-Definitions and Examples-Regular and Singular Elements-Topological Divisors of zero-The Spectrum-Important Consequences of the Non-emptiness of the Spectrum-Spectral Mapping Theorem for Polynomials Radius Formula.

TEXT BOOK:

D.Somasundaram(2013) - "A First Course in Functional Analysis ",Third Re-Print, Narosa Publishing House,New Delhi.

Unit	Chapter	Sections
Ι	IV	4.1 4.7
II	V	5.1 - 5.6
III	VI	6.1-6.5
IV	VI	6.6-6.9
V	VII	7.1-7.7

REFERENCE BOOKS:

- John B. Conway (1999)-"A Course in Functional AnalysisSecond Edition", Second Edition, AMS, GSM VOL.21.
- C. Goffman and G. Pedrick (1987) "A First Course in Functional Analysis", Prentice Hall of India, New Delhi.
- G.F. Simmons (1963) "Introduction to Topology and Modern Analysis", McGraw –Hill Book Company, London.

(15 Hours)

(15 Hours)

(12 Hours)

BOOKS FOR REFERENCE:

- 1. <u>https://www.slideshare.net/SanjaySharma1025/some-fundamental- theorems-in-banach-</u>
- spaces-and-hilbert-spaces
- 2. https://www.imsc.res.in/~sunder/fa.pdf
- 3. https://www.slideshare.net/leingang/lesson-16-the-spectral-theorem-and-applications

CATEGORY	COURSE	COURSE	COURSE TITLE	CONTACT	CREDIT
	ТҮРЕ	CODE		HOURS	
PART - III	CORE – XVI	21MAP16	MATHEMATICAL	36	1
	PRACTICAL		SOFTWARE – II		
			(R SOFTWARE)-		
			PRACTICAL		

Year	Semester	Internal Marks	External Marks	Total Marks	
Second	III	50	50	100	

Preamble :

To enable the students to get experienced about R Software.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO STATEMENT	KNOWLEDGE	
NUMBER		LEVEL	
CO1	Recognize the commands provided in R Software	K ₁	
CO2	Demonstrate the graphs and diagrams inn statistics	K ₂	
CO3	Classify statistical methods using numerical data	K ₃	
CO4	Analyze the data using various statistical methods	K ₄	
CO5	Estimate measures of central tendency, probabiliy distributions, standard deviation, variance, correlation, regression and one and two sample 't' test	K5	
CO6	Formulate functions, data frames, diagrams and graphs	K ₆	

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	3	3	3
CO4	9	9	9	3	3	3	3
CO5	9	9	9	3	1	1	1
CO6	9	9	9	1	1	1	1
Total	54	54	54	34	26	25	25
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	2.83	4.20	4.12	5.60
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

LIST OF PROGRAMS

All the following listed programs have to be executed and recorded

- 1. To use R software as a calculator.
- 2. To enter, manipulate and retrieval of data from gedit and Libre Office Calc to R.
- 3. To create data frame directly in R.
- 4. To display data using pie diagram, box plot, histogram and bar plot.
- 5. To define and call the functions in R environment.
- 6. To find mean, median, geometric mean, harmonic mean of numerical data.
- 7. To find the standard deviation, variance of the given data.
- 8. To find Correlation co-efficient and linear regression line for Bivariate data.
- 9. To find multiple linear regression models.
- 10. To compute probabilities in various distributions.

11. To draw the graph of probability mass and density functions.

12. To analyse the data using one and two sample 't' test and paired 't' test.

BOOKS FOR REFERENCE:

- 1. <u>https://www.youtube.com/watch?v=eDrhZb2onWY</u>
- 2. <u>https://www.youtube.com/watch?v=KlsYCECWEWE</u>
- 3. https://www.tutorialspoint.com/r/index.htm

CATEGORY	COURSE TYPE	COURSE	COURSE TITLE	CONTACT	CREDIT
		CODE		HOURS	
PART V	PROFICIENCY	21PEPMA01	INDUSTRIAL	-	2
	ENHANCEMENT		MATHEMATICS		
	(SELF STUDY)		(SELF STUDY)		

Year	Semester	Internal Marks	External Marks	Total Marks
Second	III	-	100	100

Preamble

To enable the students to learn decision making problems based on operations research and gain the knowledge about numerical methods.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	understand the meaning, purpose, and tools of operations research.	K ₂
CO2	gain the knowledge about simulation, Inventory control and Numerical Methods.	K ₁
CO3	apply the concepts of Inventories to find EOQ.	K ₃
CO4	Analyze the concept of Interpolation with equal and unequal integrals and find the solution to the problems by using various methods.	K _{2 &} K ₄
CO5	evaluate the problems based on types of inventory control.	K ₅ , K ₆

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	1	3	3
CO5	9	9	9	9	1	1	1
CO6	9	9	9	9	1	0	0
Total	42	42	42	42	10	25	25
Contribution							
of COs to							
POs							
Weighted	3.21	3.22	3.33	3.50	1.61	4.12	5.60
Percentage							
of COs							
contribution							
to POs							

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: INTRODUCTION TO OPERATIONS RESEARCH

Scientific methods in O.R –Modeling in operations research – Advandages and limitations of models – Methodology of operations research – O.R and Decision Making – Applications of

operations research -Opportunities and short comings of operations research.

UNIT II: SIMULATION

Introduction – Process of simulation – Simulation models – Eevent–type simulation – generation of random numbers Mmonte-carlosimulation .

UNIT-III:INVENTORY CONTROL

Types of inventories - Objectives of scientific Inventory control-Inventory costs – EOQ Problem with no shortages .

UNIT IV : INFORMATION THEORY

Introduction – Measure of information – Entropy-The expected information –Joint conditional entropies .

UNIT V: INTERPOLATION

Interpolation with equal integrals: (Central Diffrence Interpolation Formulae)

Gauss Forward formula - Gauss Backward formula - Stirling's Formula.

Interpolation with unequal integrals:

Lagrange's Interpolation – Inverse interpolation.

TEXT BOOK:

- KantiSwarup, P. K. Gupta, Man Mohan (2017) "Operations Research" 18th Revised Edition, S. Chand & Sons Education Publications, New Delhi.
- Dr.Venkataraman.M.K.(2013) "Numerical Methods in Science and Engineering", The National Publishing Company, Chennai.

UNIT	BOOK	CHAPTER	PAGE
Ι	1	1	27-35
П	1	22	639-646
III	1	19	507-524
IV	1	30	885-889,
			901-903
V	2	7	216-225, 253-259,
		8	262-263

REFERENCE BOOKS:

 DharaniVenkata Krishnan .S – " Operations Research Principles and Problems" Keerthi publishing house PVT Ltd. Kandasamy. P, Thilagavathi. K and Gunavathi. K (2007) - "Numerical methods"
 S. Chand and Company Ltd, New Delhi – Revised Edition.

BOOKS FOR REFERENCE:

 https://www.optimalworkshop.com/learn/ebooks/the-ultimate-researchopschecklist/?utm_source=google&utm_medium=cpc&utm_campaign=row-alpharesearchops&keyword=research%20ops&match_type=e&network=g&gclid=EAIaIQobChMIuM DqycPE8wIVFDUrCh0anQBDEAAYASAAEgKXIPD_BwE
 <u>https://pubsonline.informs.org/journal/opre</u>

3. https://implementationscience.biomedcentral.com/articles/10.1186/s13012-016-0444-0

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	ТҮРЕ	CODE	TITLE		
PART - III	CORE –	21MAP17A	GRAPH	72	3
	XVIII		THEORY		
	ELECTIVE				
	- III				

Year	Semester	Internal Marks	External Marks	Total Marks
Second	III	50	50	100

Preamble

To enable the students to learn and gain knowledge about Graphs, Euler tours,

Hamiltonian cycles, Matching and Colourings of edges as well as vertices.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the basic concepts of graph theory.	K ₁
CO2	illustrate various types of	K ₂
	graph, matchings, coverings and colourings.	
CO3	apply the preliminaries of graph theory in well –	K ₃
	named theorems and Conjectures.	
CO4	analyze the proof of theorems on	K ₄
	graphs, matchings, coverings and colourings.	
CO5	determine the path ,cycle, Chromatic Number,.	K ₅
CO6	construct graphs with Euler tours, Hamiltonian	K ₆
	cycles, and four and five Colour concepts.	

 K_1 - Remember; K_2 – Understand; K_3 - Apply; K_4 - Analyze; K_5 – Evaluate; K_6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	3	3	3	1
CO5	9	9	9	3	3	3	1
CO6	9	9	9	3	1	1	0
Total	54	54	54	36	22	28	11
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	3.00	3.55	4.62	2.46
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: FUNDAMENTAL CONCEPTS OF GRAPHS AND TREES (15 Hours)

Graphs - Simple Graphs - Graph Isomorphism - The Incidence and Adjacency matrices -Subgraphs - Vertex Degrees - Paths and Connection - Cycles and trails. Trees - Cut edges and Bonds - Cut vertices - Cayley's formula.

UNIT II: CONNECTIVITY AND PATHS

Connectivity – Blocks. Euler tours and Hamilton Cycles: Euler tours – Hamilton Cycles.

UNIT III: MATCHINGS

Matchings and coverings in Bipartite Graphs – Perfect Matchings. Edge colourings: Edge Chromatic number - Vizing's theorem.

UNIT IV: INDEPENDENT SETS AND VERTEX COLOURINGS (15 Hours)

Independent sets – Chromatic Number – Brook's Theorem – Hajo's Conjecture.

(15 Hours)

UNITV: PLANAR GRAPHS

(12 Hours)

Plane and planar Graphs – Dual Graphs – Euler's formula – Bridges – Kuratowski's theorem (Proof omitted) – Five Colour Theorem and Four colour Conjecture.

TEXT BOOK:

J.A.Bondy and U.S.R.Murty(1976), "Graph Theory with Applications", American Elsevier Publishing company., Inc., New York.

UNIT	CHAPTER	SECTION
Ι	1	1.1-1.7
	2	2.1-2.4
II	3	3.1-3.2
	4	4.1-4.2
III	5	5.1-5.3
	6	6.1-6.2
IV	7	7.1
	8	8.1-8.3
V	9	9.1-9.6

REFERENCE BOOKS:

1. Narsinghdeo (1987) "Graph Theory", Prentice Hall of India Private Limited, New Delhi.

2. Frank Harary, "Graph Theory", Narosa Publishing House, New Delhi.

3. R.Balakrishnan and K.Ranganathan, Springer (2008), "A Text Book of Graph Theory", New Delhi.

4. V.K. Balakrishnan, Tata Mcgrawhill (2004), "Graph Theory", Schaum's outlines, New Delhi.

BOOKS FOR REFERENCE:

1.https://www.youtube.com/watch?v=sWsXBY19o8I

2.https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ve d=2ahUKEwjkzq-

5jJfzAhW6yjgGHZX7CbsQFnoECAwQAQ&url=https%3A%2F%2Fwww.slideshare.net%2Feh amzei%2Fgraph-theory-70229068&usg=AOvVaw1B86S7CGufOtRuwX4_T7Mq

3.https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ve d=2ahUKEwjkzq<u>5jJfzAhW6yjgGHZX7CbsQFnoECCQQAQ&url=https%3A%2F%2Fwww.slideshare.net%2FM</u> anashKumarMondal%2Fgraph-theory-108809072&usg=AOvVaw204o8DeJSq9IMoD7UZ3ISv

CATEGORY	COURSE	COURSE	COURSE	CONTACT	CREDIT
	ТҮРЕ	CODE	TITLE	HOURS	
PART - III	CORE –	21MAP17B	INTEGRAL	72	3
	XVIII		TRANSFORMS		
	ELECTIVE				
	- III				

Year	Semester	Internal Marks	External Marks	Total Marks
Second	III	50	50	100

Preamble

To enable the students to learn and gain knowledge about Fourier Cosine and Sine Transforms and Hankel transforms.

Course Outcomes

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the concepts based on Fourier Sine and Cosine	K ₁
	transforms, Hankel transforms.	
CO2	Explain the concepts of Fourier Transforms, Hankel	K ₂
	transforms and diffusion equations.	
CO3	apply the Fourier Transforms, Hankel transforms in	K ₃
	Laplace Equation and PDE.	
CO4	analyze the properties on Fourier and Hankel	K4
	Transforms.	
CO5	evaluate the problems based on Fourier Cosine and	K5
	sine Transforms and Hankel Transforms.	
CO6	construct the solution of Laplace and linear diffusion	K ₆
	equations.	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	3	3	3	1
CO5	9	9	9	3	3	3	1
CO6	9	9	9	3	1	1	0
Total	54	54	54	36	22	28	11
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	3.00	3.55	4.62	2.46
Percentage							
of COs							
contribution							
to POs							

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: FOURIER TRANSFORMS:

Fourier sine and cosine transforms –Fourier transforms of derivatives -Fourier transforms of simple functions

UNIT II : FOURIER TRANSFORMS (cont..)

Convolution integral – Parseval's Theorem-Solution of PDE by Fourier transform –Laplace equation in half plane - Laplace equation in infinite strip.

(15 Hours)

UNIT III: DIFFUSION EQUATION

Laplace equation in semi infinite strip. The Linear diffusion equation on a semi infinite line –The two dimensional diffusion equation. Solution of the diffusion equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$ with the boundary condition $u_x(0,t) = f(t)$, $t \ge 0$ and the initial condition u(x,0) = 0 - Solution of diffusion equation on a semi infinite line.

UNIT IV: HANKEL TRANSFORMS:

Properties of Hankel Transforms – Hankel inversion theorem – Hankel Transform of derivative of functions - The Parseval's relation for Henkel Transforms –Axisymmetric Dirichlet problem for a half space.

UNIT V: HANKEL TRANSFORMS (cont..)

(12 Hours)

(15 Hours)

Axisymmetric Dirichlet problem for a thick plate. Relation between Fourier and Hankel Transforms – Problems.

TEXT BOOKS:

Sneddon.I.N.(1974) - "The Use of Integral Transforms", Tata McGraw Hill, New Delhi.

UNIT	CHAPTER	SECTION
I	2	2.4 - 2.7
II	2	2.9 – 2.10
III	2	2.16- 1(a),(b),(c), 2.16 – 2 (a), (b)
IV	5	5.2 – 5.4, 5.6 & 5-10-1
V	5	5-10-2, 5.7

BOOKS FOR REFERENCE:

1. https://www.maths.ed.ac.uk/~jmf/Teaching/MT3/IntegralTransforms.pdf

2. https://www.britannica.com/science/integral-transform

3. http://www.hep.caltech.edu/~fcp/math/integralEquations/integralEquations.pdf

SEMESTER – IV

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
PART - III	CORE - XIX	21MAP18	FUNCTIONAL ANALYSIS	72	5

Contact Hours per Week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
Second	IV	50	50	100

Preamble

To enable the students to learn and gain knowledge about Banach space and normed linear space.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Recall the basic concept of Banach spaces, quotient space, Continuous linear functional, Hahn banach theorem and Bounded linear operator.	K ₁
CO2	Explain the concepts of linear space, normed linear space and banach space.	K ₂
CO3	apply the knowledge of functional analysis in linear space, normed linear space and in banach space.	K ₃
CO4	analyze the properties of Banach spaces, quotient space, Continuous linear functional, Hahn banach theorem and Bounded linear operator.	K4
CO5	Evaluate the properties of Banach spaces, quotient space, Continuous linear functional, Hahn banach theorem and Bounded linear operator.	K5

CO6	Construct the vector space in Banach spaces,	K ₆
	quotient space, Continuous linear functional, Hahn	
	banach theorem and in Bounded linear operators.	

CO/PO **PO1 PO2** PO3 **PO4 PO5 PO6 PO7 CO1** 9 9 9 9 9 9 3 **CO2** 9 9 9 9 9 3 9 9 **CO3** 9 9 9 9 9 3 **CO4** 9 9 9 9 9 9 3 **CO5** 9 9 9 9 9 9 1 **CO6** 9 9 9 9 9 9 1 54 54 54 54 54 Total 54 14 Contribution of COs to POs 8.72 8.91 4.12 4.14 4.28 4.50 3.13 Weighted Percentage of COs contribution to POs

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: BANACH SPACES

Introduction- Basic inequalities –Metric Space and its properties –Vector space – Normed linear spaces, Definitions and properties-Examples of Banach spaces.

UNIT II: QUOTIENT SPACES

Quotient spaces-Direct sum of subspace-Continuous linear transformations.

(15 Hours)

UNIT III: CONTINUOUS LINEAR FUNCTIONALS:

Introduction- continuous linear functional-Representation theorems for functional.

UNIT IV: HAHN BANACH THEOREM

The Hahn Banach Theorem-Some consequences of the Hahn Banach Theorems.

UNIT V: BOUNDED LINEAR OPERATORS

Introduction-The open mapping theorem-The closed graph theorem-The banach Steinhaus theorem-The Weak and Weak* Convergence-The conjugate of an operator.

TEXT BOOK:

D.Somasundaram(2013) - "A First Course in Functional Analysis ",Third Re-Print, Narosa Publishing House,New Delhi.

Unit	Chapter	Sections
Ι	I	1.1 – 1.6
Π	Ι	1.7 – 1.9
III	II	2.1 –2.3
IV	II	2.4, 2.5
V	Ш	3.1 – 3.7

REFERENCE BOOKS:

- 1 .C. Goffman and G. Pedrick(1987) "A First Course in Functional Analysis", Prentice Hall of India, New Delhi.
- G.F. Simmons(1963) "Introduction to Topology and Modern Analysis", McGraw –Hill Book Company, London.

BOOKS FOR REFERENCE:

- 1. https://www.maths.usyd.edu.au/u/athomas/FunctionalAnalysis/daners-functional-analysis-2017.pdf
- 2. https://docs.ufpr.br/~eidam/2019/2/CM075/Kreyszig.pdf
- 3. https://people.math.ethz.ch/~salamon/PREPRINTS/funcana.pdf
- 4. http://www.ddegjust.ac.in/2019/4/mal%20641_19042019.pdf

(15 Hours)

(12 Hours)

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
PART - III	CORE - XX	21MAP19	MATHEMATICAL METHODS	72	4

Year	Semester	Internal Marks	External Marks	Total Marks
Second	IV	50	50	100

Preamble

To enable the students to learn and gain knowledge about Integral Equations and Calculus of Variations.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the concepts based on Various types of integral	K ₁
	equations and Calculus of Variations.	
CO2	explain various types of integral equations,	K ₂
	extremals, Euler equations, Euler – Poisson equation,	
	and Ostrogradsky equation.	
CO3	apply various methods for finding the solutions of	K ₃
	Fredhlom Integral Equation, Volterra Integral	
	equation and Calculus of Variation.	
CO4	analyze the concepts of Fredhlom Integral Equation	K ₄
	and Volterra Integral equation, Calculus of	
	Variation.	
CO5	evaluate the problems based on Fredhlom Integral	K5
	Equation, Volterra Integral equation and Calculus of	
	Variation.	

CO6	Construct initial, boundary value problems,	K ₆
	minimum surface of revolution problem,	
	Brachistochrome problem, problem on geodesics.	

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	1	1
CO2	9	9	9	9	1	3	1
CO3	9	9	9	9	3	3	1
CO4	9	9	9	9	3	1	1
CO5	9	9	9	9	3	3	1
CO6	9	9	9	9	3	3	1
Total	54	54	54	54	16	14	6
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	2.58	2.31	1.34
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: INTEGRAL EQUATIONS

Types of Integral equations –Integral Fredholm Alternative–Equation with separable Kernel.

UNIT II: METHOD OF SUCCESSIVE APPROXIMATIONS (15 HOURS)

Method of successive Approximations – Iterative Scheme - Volterra integral equations – examples.

(15 HOURS)

UNIT III: SINGULAR& ABEL INTEGRAL EQUATIONS (15 HOURS)

Application of Integral equation to ordinary differential equation –Initial value problems –Boundary value problems –Singular integral equations –Abel Integral equation.

UNIT IV: CALCULUS OF VARIATIONS

Variation and its properties – Fundamental lemma of calculus of variations - Euler's equation – Functionals of the integral forms -Functional dependent on higher order derivatives – Euler poisson equations.

UNIT V:CALCULUS OF VARIATIONS(Con...) (12 HOURS)

Functionals dependent on the functions of several independent variables – Ostrogradsky equation - Variational problems in parametric form –Applications.

TEXT BOOKS:

For Units I, II and III:

Kanwal.R.P. (1971) – "Linear Integral Equations Theory and Technique", Academic press, New York.

For Unit IV and V:

Elsgolts.L. (1970) – "Differential Equations and Calculus of Variations", Mir publishers, Moscow.

UNIT	CHAPTER	SECTION
Ι	Ι	1.1 – 1.6
	II	2.3 – 2.5
II	III	3.1 – 3.4
III	V	5.1 - 5.2
111	VIII	3.1 - 3.2 8.1 - 8.2
	V III	0.1 - 0.2
IV	VI	6.1 - 6.4
V	VI	6.5 - 6.7
•		0.5 - 0.7

(15 HOURS)

BOOKS FOR REFERENCE:

- 1. <u>https://home.iitk.ac.in/~dasgupta/MathBook/Imastertrans.pdf</u>
- 2. <u>https://onlinelibrary.wiley.com</u>
- 3. https://nptel.ac.in/courses/111/107/111107098/

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	TYPE	CODE	TITLE		
PART - III	CORE -	21MAP20	FLUID	72	4
	XXI		DYNAMICS		

Year	Semester	Internal Marks	External Marks	Total Marks
Second	IV	50	50	100

Preamble

To enable the students to learn and gain knowledge about the concept of stream lines, path lines, energy equation, two dimensional motion, Navier stokes equations and boundary layer in compressible and incompressible flow.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the concepts based on stream lines, path lines,	K ₁
	energy equation, two dimensional motion, Navier	
	stokes equations and boundary layer equations.	
CO2	illustrate stream lines, path lines, energy equation,	K ₂
	two dimensional motion, Navier stokes equations	
	and boundary layer equations.	
CO3	apply the concepts of fluid dynamics in equations of	K ₃
	continuity, momentum theorem, Blasius theorem,	
	Navier Strokes equations and boundary layer	
	equations.	
CO4	analyze the solutions of energy equations Navier	K ₄
	Strokes equations and boundary layer equations.	
CO5	evaluate the problems based on stream lines, path	K ₅
	lines and two – dimensional motion.	

CO6	construct the energy equations, Navier Strokes	K ₆	
	equations and boundary layer equations.		

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	9	9	9	1	3	3
CO5	3	3	3	3	0	1	1
CO6	3	3	3	3	0	0	0
Total	42	42	42	42	10	31	31
Contribution							
of COs to							
POs							
Weighted	3.21	3.22	3.33	3.50	1.61	5.11	6.95
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

COURSE CONTENT:

UNIT I: STREAM LINES AND PATH LINES

Introductory Motions – Velocity – Stream Lines and Path Lines – Stream Tubes and Filaments – Fluid Body – Density – Pressure. Differentiation following the Fluid – Equation of continuity – Boundary conditions – Kinematical and physical – Rate of change of linear momentum – Equation of motion of an inviscid fluid.

Unit II: ENERGY EQUATION FOR INVISCID FLUID:

Euler's momentum Theorem - Conservative forces - Bernoulli's theorem in steady

(15 Hours)

motion – Energy equation for inviscid fluid – circulation – Kelvin's theorem – Vortex motion – Helmholtz equation.

Unit III: TWO DIMENSIONAL MOTION:

Two Dimensional Motion – Two Dimensional Functions – Complex Potential – Basic singularities – Source – Sink – Vortex – Doublet – Circle theorem. Flow past a circular cylinder with circulation – Blasius Theorem – Lift force. (Magnus effect)

Unit IV:NAVIER-STOKES EQUATIONS:

Viscous flows – Navier-Stokes equations – Vorticity and circulation in a viscous fluid – Steady flow through an arbitrary cylinder under pressure – StaedyCouettc flow between cylinders in relative motion.

Unit V:BOUNDARY LAYER EQUATIONS

Laminar Boundary Layer in incompressible flow: Boundary Layer concept – BoundaryLayer equations – Displacement thickness, Momentum thickness – Kinetic energy thickness –Integral equation of boundary layer – Flow parallel to semi infinite flat plate – Blasius equationand its solution in series.

TEXT BOOKS:

For Units I and II:

Milne Thomson.L.M. (1968) - "Theoretical Hydro Dynamics", 5th Edition,

McMillanCompany.

For Units III, IV and V:

Curle.Nand Davies.H.J (1968) – "Modern Fluid Dynamics" – (Volume I) DVan Nostrand Company Limited, London.

UNIT	CHAPTER	SECTION
Ι	Ι	1.0 – 1.3., 3.10-3.41 (omit 3.32)
Π	III	3.42 – 3.53 (omit 3.44)
III	III	3.1 – 3.7.5 (omit 3.3.4, 3.4, 3.5.3,3.6)
IV	V	5.1-5.3.2
V	VI	6.1 – 6.3.1(omit 6.2.2., 6.2.5)

(15 Hours)

(15 Hours)

(12 Hours)

BOOKS FOR REFERENCE:

1. https://youtu.be/0VEDeLU2JJs

2. https://www.slideshare.net/muhsenbd/twodimensional-ideal-flow-chapter-6

3. https://www.slideshare.net/Haroonmechno/fm2-35616441

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	TYPE	CODE	TITLE		
PART - III	CORE -	21MAP21	PROJECT	72	4
	XXII		WORK AND		
			VIVA -		
			VOCE		

Year	Semester	Internal Marks	External Marks	Total Marks
Second	IV	50	50	100

Preamble

To enable the students to learn and gain knowledge about their principal areas of study.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the fundamental disciplinary concepts and methods appropriate to their principal areas of study.	K ₁
CO2	illustrate the depth knowledge about their principal areas of study	K ₂
CO3	apply the knowledge of principles, theories, and concepts to project situations.	K ₃
CO4	analyze the problems creatively through sustained critical investigation	K4
CO5	evaluate the consequences of project and their implications for project objectives.	K5
CO6	construct the solutions of contemporary issues in their chosen field of research.	K ₆

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	3	3
CO6	9	9	9	9	3	3	3
Total	54	54	54	54	36	36	36
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	4.28	4.50	5.81	5.94	8.07
Percentage							
of COs							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT
PART - III	CORE –	21MAP22A	FUZZY LOGIC	72	3
	XXIII		AND FUZZY		
	ELECTIVE		SETS		
	- IV				

Year	Semester	Internal Marks	External Marks	Total Marks
Second	IV	50	50	100

Preamble

To enable the students to learn and gain knowledge about fuzzy sets, fuzzy relations,

fuzzy measures, uncertainty and information and also their applications.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	recall the basic concepts of fuzzy sets theory, types of fuzzy sets, standard operations of fuzzy sets, fuzzy relations, fuzzy graphs and real life applications	K ₁
CO2	express the basic concepts of fuzzy set theory with fuzzy logic, fuzzy relations, fuzzy measures, measures of fuzziness, fuzzy graphs and real life applications	K ₂
СОЗ	apply the concepts of fuzzy sets, operations of fuzzy sets, fuzzy relations, fuzzy measures in real life applications	K ₃
CO4	analyze the standard fuzzy operations, types of fuzzy relations, different fuzzy measures, types of fuzzy controller.	K4
CO5	evaluate fuzzy set, fuzzy relations, fuzzy measures, measures of	K5

	fuzziness in real life	
CO6	design fuzzy models in real life situations.	K ₆

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	3	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	3	3
CO6	9	9	9	9	3	3	3
Total	54	54	45	45	15	15	15
Contribution							
of COs to							
POs							
Weighted	4.12	4.14	3.56	3.75	2.42	2.47	3.36
Percentage							
of COs							
contribution							
to POs							

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's. COURSE CONTENT:

UNIT – I: FUZZY SETS AND EXTENSIONS

(12 Hours)

Basic definitions- Set-theoretic Operations for fuzzy sets- Types of Fuzzy sets- Algebraic operations- Criteria for selection appropriate aggregation operators.

UNIT – II : FUZZY MEASURES AND EXTENSION PRINCIPLE (15 Hours)

Fuzzy measures- Measures of fuzziness- The extension principle- Operations of type 2 fuzzy sets – Special extended operations- LR-representation of fuzzy sets

General discussion - Natural, life and social sciences - Management and decision making

– Computer Science.

TEXT BOOK:

- H.J.Zimmermann (2006) "Fuzzy set theory and its applications" (Fourth edition), Springer International Edition
- GeoregeJ.Klir and Tina A. Folger, (1995) "Fuzzy Sets, Uncertainity and Information", Prentice-Hall of India Private Limited.

1	2 3	2.1-2.2 3.1-3.2.3	NUMBER 11-20 23-44
	3	3.1-3.2.3	23-44
1	4	4.1-4.2	47-52
	5	5.1-5.3.2	55-68
1	6	6.1-6.3	71-89
1	11	11.1-11.4.3	223-240
		11.7-11.7.4	244-254
2	6	6.1 - 6.6	231-264
1	 [6 1 11	6 6.1-6.3 1 11 11.1-11.4.3 11.7-11.7.4 11.7-11.7.4

REFERENCE BOOK:

George J.Klir and Boyuan, "Fuzzy Sets and Fuzzy Logic – Theory and Applications", Prentice-Hall of India Private Limited.

UNIT – III : FUZZY RELATIONS AND FUZZY GRAPHS (1

Fuzzy relations on sets and fuzzy sets – Composition of fuzzy relations- Properties of the max-min composition- Fuzzy graphs- Special fuzzy relations.

UNIT – IV : FUZZY CONTROL

Origin and objectives- Automatic control- The fuzzy controller- Types of fuzzy controller- Mamdani controller- Defuzzification- Sugeno controller- Applications

UNIT – V : APPLICATIONS

(15 Hours)

BOOKS FOR REFERENCE:

- 1. https://en.wikipedia.org/wiki/Fuzzy_set
- 2. <u>https://www.tutorialspoint.com/fuzzy_logic_fuzzy_logic_set_theory.htm</u>
- 3. <u>https://youtu.be/LUz-FbwPh3Q</u>

CATEGORY	COURSE	COURSE	COURSE	CONTACT HOURS	CREDIT
	TYPE	CODE	TITLE		
PART - III	CORE –	21MAP22B	CONTROL	72	3
	XXIII		THEORY		
	ELECTIVE				
	- IV				

Year	Semester	Internal Marks	External Marks	Total Marks
Second	IV	50	50	100

Preamble

To enable the students to gain the knowledge about modeling the control systems using difference equations.

Course Outcomes

СО	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Recall the concept of observability, controllability, Stability in Control theory.	K ₂
CO2	Explain about linear and non-linear equations in control theory.	K ₂
CO3	Applying the knowledge of differential equations in linear and non-linear systems.	K ₃
CO4	Analyze the properties of linear and non-linear equations in observability, Controllability and stability.	K4
CO5	Evaluate obsevability, Controllability, stability in different equations.	K5

CO6	Construct a knowledge in observability,	K ₆
	Controllability abd stability of linear and non-linear	
	equations.	

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	3	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	3	3	3
CO5	9	9	9	9	3	3	3
CO6	9	9	9	9	3	3	3
Total	54	54	45	45	15	15	15
Contribution							
of Cos to							
POs							
Weighted	4.12	4.14	3.56	3.75	2.42	2.47	3.36
Percentage							
of Cos							
contribution							
to POs							

Level of Correlation: 0-No Correlation; 1-Low Correlation; 3-Medium Correlation; 9-High Correlation between CO's and PO's.

Unit I: OBSERVABILITY:

Linear Systems –Observability Grammian –Constant coefficient systems –Reconstruction kernel –Nonlinear Systems.

Unit II: CONTROLLABILITY:

Linear systems –Controllability Grammian – Adjoint systems –Constant coefficient systems –steering function –Nonlinear systems.

Unit III: STABILITY:

Stability –Uniform Stability –Asymptotic Stability of Linear Systems.

104

(15 Hours)

(14 Hours)

Unit IV: STABILITY (Continuation)

Perturbed linear systems – Nonlinear systems – OPTIMAL CONTROL: Linear time varying systems.

Unit V: STABILIZABILITY:

Stabilization via linear feedback control –Bass method –Controllable subspace – Stabilization with restricted feedback.

TEXT BOOK :

Balachandran.K and Dauer.J.P.(2012)– "Elements of Control Theory", 2nd edition, Narosa, New Delhi.

UNIT	CHAPTER	PAGE NO.
I	2	21 - 38
II	3	40 - 56
III	4	75 - 81
IV	4, 6	82 - 91, 119 - 128, 130 - 131,
V	5	100 - 117

REFERENCE BOOKS:

- 1. Conti .R (1976) "Linear Differential Equations and Control", Academic Press, London.
- Curtain.R.F. and Pritchard.A.J.(1977) "Functional Analysis and Modern Applied Mathematics", Academic Press, New York.
- Klamka.J (1991) "Controllability of Dynamical Systems", Kluwer Academic Publisher, Dordrecht.
- Russell.D.L. (1979) "Mathematics of Finite Dimensional Control Systems", Marcel Dekker, New York.

R.Jana

R. JAYALAKSHMI, M.Sc., M.Phil., PGDCA, Associate Professor & Head Department of Mathematics, Pr.R. Arts College for Women (Autonomeus) Gobichettroalay stra 638 476.

(14 Hours)

(14 Hours)