P.K.R. ARTS COLLEGE FOR WOMEN (AUTONOMOUS),

(Accredited with 'A' grade by NAAC - Affiliated to Bharathiar University, Coimbatore)

GOBICHETTIPALAYAM - 638 476

DEPARTMENT OF PHYSICS

MASTER OF SCIENCE

SYLLABUS

For the candidates admitted from the Academic Year

2021-2022 and onwards

Under CBCS PATTERN

Category	Components	No. of Courses	Credit(s)/ Courses	Total Credits	Proposed Semester			
	Core: Theory	13	4/3					
	Core: Practical 4 4							
	Core: Elective	3	3					
	Core: Open Elective	1	2	02	T TY/			
Part - III	Core: Industrial / Institution Training	1	1	83	I - IV			
	Core: Major Project and Viva Voce	1	3					
Part - IV	Ability Enhancement	1	2	2	Π			
	Proficiency Enhancement: Self Study Course	1	2					
Part - V	Competency Enhancement: Online Course/ Learning Object Repository (LOR) Certificate Course	2	4	6	I - IV			
	Total	27		90				

M.Sc., Physics Programme Structure CBCS – 2021-2022 & Onwards

P.K.R Arts College for Women (Autonomous), Gobichettipalayam M.Sc., Physics 2021 - 2022 P.K.R ARTS COLLEGE FOR WOMEN (Autonomous) MASTER OF SCIENCE - PHYSICS Programme Scheme and Scheme of Examinations (For students admitted from 2021-22 & onwards) Scholastic Courses: Exam Duration Max.Marks Category /Part Hrs/week Credits hrs. Course Title of the Course Components Code Total CIA ESE SEMESTER - I 4 100 50 50 5 3 Core: 1 21PHP01 Classical Mechanics 111 4 100 50 5 3 50 Mathematical Physics Core :II 21PHP02 111 4 50 100 50 5 3 Quantum Mechanics - I Core : III 21PHP03 111 Numerical Methods & 50 100 4 5 3 50 Core : IV 21PHP04 111 MATLAB Programming Advanced Physics 3 -**** . --*** -111 Practical-I **General Electronics** 3 -111 Practical-I **** **** Essentials of Core : V 21PHP05A/ 50 3 100 Nanoscience/ Radiation 4 3 50 Ш Elective: 1 21PHP05B Physics TOTAL 30 500 19 SEMESTER - II Quantum Mechanics - II Core: VI 21PHP06 5 50 4 111 3 50 100 Advanced Electronics 111 Core: VII 21PHP07/ 5 3 50 50 100 4 Solar Physics 111 Core: VIII 21PHP08 5 3 50 50 100 3 Advanced Physics 21PHP09 Ш Core : IX 5 3 50 50 100 4 Practical-I **General Electronics** 111 Core : X 5 3 50 50 100 4 21PHP10 Practical-I

3

III	Core : XI Elective: II	21PHP11A/ 21PHP11B	Astronomy &Astrophysics/ Experimental/ Techniques	4	3	50	50	100	3
IV	Ability Enhancement	21AEP01	Cyber Security	2	3		100	100	2
			TOTAL	32				700	24
			SEMESTER – III						
III	Core : XII	21PHP12	Atomic and Molecular Spectroscopy	5	3	50	50	100	4
III	Core :XIII	21PHP13	Nuclear & Particle Physics	5 3		50	50	100	4
III	Core :XIV	21PHP14	Electromagnetic Field Theory	5 3		50	50	100	4
III	Core : XV	21PHP15	Institutional Training			100	-	100	1
III	****	****	Advanced Physics Practical-II	4	4		-	-	-
III [•] .	****	****	General Electronics Practical-II	4	4 -		-	-	-
III	Core : XVI (Open Elective)	****	Offered for students of other PG programmes/ Departments	PG programmes// 3 3 50	50	50	100	2	
III	Core : XVII Elective : III	21PHP16A7 21PHP16B	Biomedical Instrumentation/ Thin Film Physics and Crystal Growth	4	3	50	50	100	3
v	Proficiency Enhancement	21PEP01	Laser and its applications (Self-Study)	-	3	-	100	100	2
	*		TOTAL	31				700	20
	с. • С.,	*	SEMESTER – IV						
III	Core :XVIII	21PHP17	Condensed Matter Physics	6	3	50	50	100	4
III	Core : XIX	21PHP18	Thermodynamics and Statistical Mechanics	6	3	50	50	100	4

4

4

		Certificate Course			SEMESTER I – IV SEMESTER I – IV					
Competency		Online Course / Learning Object Repository (LOR)								
			TOTAL	30				600	23	
111	Core :XXIII	21PHP22	Project Work & Viva Voce	2	3	50	50	100	3	
111	Core : XXII	21PHP21	General Electronics Practical-II	5	6	50	50	100	4	
111	Core : XXI	21PHP20	Advanced Physics Practical-II	5	6	50	50	100	4	
111	Core : XX	21PHP19	Electronic Communication Systems	6	3	50	50	100	4	

Meestip

(Signature with Seal)

Head, Department of Physics, P.K.R. Arts College for Women, Gobichettipalayaan -638476.

.

SYLLABUS

(For students admitted from 2021-22 & onwards) Semester – I

Category	Course Type	Course Code	Course Title Contact Hours			Credit				
Part – III	Core: I	21PHP01	CLASSI MECHA		60		4			
Contact he	ours per wo	eek: 5								
Year	\$	Semester	Internal Marks	Externa Marks			Total Marks			
First		Ι	50	50			100			
concepts in formulation	 Preamble: The aim is to provide the students, the knowledge and understanding oncepts in the dynamics of system of particles, motion of rigid body, Lagrangia ormulation of mechanics CO Statement: On the successful completion of the course, students will be able 									
CO							Knowledge			
COs		(CO Statement				Level			
CO1	_		ch as Constraints, mentum and Poiss	-			K1			
CO2	Equation of Action, Equation	D'Alembert's p of Motion, Pois quivalent One l gles, Kepler's I	ist		K2					
CO3	apply Lag Harmonic HJ method		K3							
CO4	Equilibriu	m, The motion	tial frames, Stable of a Symmetric T notion in Poisson I	op under the	e action		K4			

CO5	evaluate the Hamilton's Variational principle, Canonical Transformations, Generating Function and different forms, Principle Axis of Transformation, Moments and Products of Inertia	K5
CO6	Formulate Effects of Coriolis force on moving bodies.	К6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

PO Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7					
C01	9	9	9	9	9	3	1					
CO2	9	9	9	9	9	3	1					
CO3	9	9	9	3	3	3	1					
CO4	9	9	9	3	3	3	1					
CO5	9	9	3	1	3	1	1					
CO6	9	3	3	1	1	1	1					
Total Contributio n of COs to Pos	54	48	42	26	28	14	6					
Weighted Percentage of COs Contributio n to Pos	6.37	6.38	7.22	5.32	6.43	3.70	2.29					

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

SYLLABUS

UNIT-I: LAGRANGIAN FORMULATION

(12 Hours)

Constraints and Degrees of Freedom-Generalized Coordinates: Generalized Displacement, Velocity, Acceleration, Momentum, force & Potential-Variational technique and Euler Lagrange Differential

equation-Hamilton's Variational principle-Lagrange's equation of motion from Hamilton's principle-D'Alembert's principle-Application of Lagrange's equation of motion: Linear Harmonic Oscillator-Simple Pendulum-Isotropic Oscillator.

UNIT - II : HAMILTONIAN FORMULATION

Phase space – Hamiltonian - Hamilton's Canonical Equation of Motion - Physical Significance of H -Deduction of Canonical Equation from Variation principle - Application of Hamilton's equation of motion: Simple Pendulum, Linear Harmonic Oscillator, and Isotropic Oscillator - Principle of Least Action and Proof - Canonical Transformations - Generating Function and different forms.

UNIT- III : HAMILTON – JACOBI METHOD

Hamilton Jacobi Method- Solution of Harmonic Oscillator Problem by HJ method-Particle falling freely-Damped Harmonic Oscillator-Poisson Brackets-Definition-Equation of motion in Poisson Bracket form-Jacobi -Poisson Theorem-Angular Momentum and Poisson's Bracket.

UNIT-IV: TWO BODY PROBLEMS

Equivalent One body problem-General Features of central force motion-Stability of orbits and Conditions for closure- Kepler's Problem - Shapes of orbits-Inertial/Non inertial frames-Rotating Coordinate system-Effects of Coriolis force on moving bodies.

UNIT- V: RIGID BODY DYNAMICS

Euler's theorem-Euler's angles-Angular velocity of a rigid body-Angular momentum of Rigid Body-Moments and Products of Inertia-Principle Axis of Transformation-Torque Free Motion of a Rigid Body-Poinsot Solutions-The motion of a Symmetric Top under the action of Gravity-Stable and Unstable Equilibrium.

Text Books:

1. Classical Mechanics, S.L.Gupta, V. Kumar & H. V. Sharma, 2015, Pragati Prakashan, Meerut. (All units)

References Books:

1. Classical Mechanics, H. Goldstein, Charles P. Poole, John Safko, 2011, Pearson, India.

Web Reference:

- 1. https://sites.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf
- 2. https://www.physics.rutgers.edu/~shapiro/507/book.pdf

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Category	Course Type	Course Code	Course T	itle	Contact Hours	Credit				
Part – III	Core: II	21PHP02	MATHEMA PHYSIC		60	4				
Contact he	ours per we	eek: 5								
Year	S	Semester	Internal Marks	Externa Marks		Total Marks				
First		Ι	50	50		100				
Preamble: The aim is to provide the students firm foundation in various mathematical methods developed and used for understanding different Physics phenomena. CO Statement: On the successful completion of the course, students will be able to										
				Knowledge						
COs		(Level						
CO1	-	e basic definiti ls, Functions, (K1						
CO2	D2 summarize the Legendre's Polynomials and Functions, Orthogonality, Functions of a Complex Variable, Vector Space, Basis, Inner Product, Fourier Series, Laplace Transform, Multiplication table, Subgroups, cosets and classes, Schur's lemma, rotation groups									
CO3		e Special funct nd relations	ion and complex v	variables in	various	К3				
CO4	classify the	e functions and	l variables, vector	space and g	groups	K4				
CO5	relate the I	egendre Polyn	omial and their de	erivatives		K5				
CO6	Make Fourier Series and Laplace Transform for different problems and create character table of C2v and C3v by using groups									
K1 – Remo	ember; K2	– Understand	; K3 – Apply; K4	I – Analyze	; K5 – Ev	aluate; K6 – Create				
	CO	- PO MAPPIN	NG (COURSE AI	RTICULAT	TION MA	ATRIX)				

PQ Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
C01	9	9	9	3	3	3	1
CO2	9	9	9	3	3	3	1
CO3	9	9	9	3	3	3	1
CO4	9	9	3	3	3	1	1
CO5	9	3	3	3	1	1	1
CO6	9	3	3	1	1	1	1
Total Contributio n of COs to PO s	54	42	36	16	14	10	6
Weighted Percentage of COs Contributio n to PO s	6.37	5.58	6.19	3.27	3.21	2.64	2.29

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

UNIT-I: SPECIAL FUNCTIONS

Legendre's Polynomials and Functions- Differential Equations and Solutions-Generating Functions- Orthogonality-Relation between Legendre Polynomial and their Derivatives Recurrence Relations- Bessel's Function-Differential Equation and Solution-Generating Functions-Recurrence Relations- Hermite function.

UNIT-II: COMPLEX VARIABLE THEORY

Functions of a Complex Variable-Single and Multi valued Functions-Cauchy-Reimann Differential Equation-Analytical Line Integrals of Complex Function-Cauchy's Integral Theorem and Integral Formula-Derivatives of an Analytic Function-Taylor's Variables Residue and Cauchy's Residue Theorem.

UNIT-III: LINEAR SPACE

Definition of Vector Space-Linear Dependence-Linear Independence-Basis-Dimension of a Vector

10

(12 Hours)

(12 Hours)

(12 Hours)

Space-Representation of Vectors and Linear Operators with respect to Basis-Schmidt Orthogonalization Process-Inner Product.

UNIT- IV:FOURIER SERIES & LAPLACE TRANSFORMS (12 Hours)

Fourier Series-Dirichlet's Theorem-Change of Interval-Complex Form-Fourier Series in the Interval $(0, \infty)$ - Uses of Fourier Series.-Laplace Transform-Definition-Properties-Translation Property-Inverse Laplace Transform-Properties, example problems.

UNIT- V: GROUP THEORY

(12 Hours)

Definition of Groups– Multiplication table – Subgroups, cosets and classes – Point and space groups – Homomorphism and isomorphism – Reducible and irreducible representations – Schur's lemma -- The great orthogonality theorem (qualitative treatment without proof) – Formation of character table of C2v and C3v -- Elementary ideas of rotation groups.

Text Books:

- 1. **Mathematical Physics,** SathyaPrakash, 2002, Sultan Chand & Sons. [ISBN: 81-7014-925-8] (All Units)
- 2. **Mathematical methods for Physicists,** Arfken, weber & Harris, 2005, 7th edition, Elsevier Academic Press.
- 3. Elements of group theory for Physicists A.W. Joshi, -Wiley Eastern, 2002 (Unit V)

Reference books:

- 1. Mathematical Physics, B.D. Gupta, 3rd Edition, 2006, Vikas Publishing House.
- 2. Mathematical Physics, B.S. Rajput, 17th Edition 2004, Pragati Prakashan, Meerut
- 3. Mathematical Physics, P.K. Chattopadhayay, New Age International, New Delhi.
- 4. Mathematical Physics, P.P. Gupta, Yadav& Malik, KedarnathRamnath, Meerut.

Web Reference:

 $1.\ https://pdf coff ee.com/download/mathematical-physics-by-satya-prakash-pdf-50 pdf-pdf-free.html$

2. https://isidore.co/calibre/get/pdf/4469

Category	Course Type	Course Code	Course T	litle	Contact Hours	Credit
Part – III	Core: III	21PHP03	QUANT		60	4
Contact h	ours per we	eek: 5				
Year	5	Semester	Internal Marks	Externa Marks		Total Marks
First		Ι	50	50		100
approxima	tion method	ls and to know	idents to understa the Orbital and S _I mpletion of the co	oin angular 1	momentum.	rix formalism, learn the
						Knowledge
COs		C		Level		
CO1	recall the l functions, quantum n		K1			
CO2	-		s in quantum mec ximation method		-	K2
CO3		tum mechanica	on and approxima l systems and to f			K3
CO4		he various appr Schrodinger, F		K4		
CO5	Validate th operators, co-efficien	K5				
CO6	formulate	K6				

CO – PO Map	ping						
PQ Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	3	3
CO3	9	9	9	3	3	3	1
CO4	9	9	3	1	1	3	1
CO5	9	3	3	1	1	1	1
CO6	9	3	3	1	1	1	1
Total Contributio n of COs to PO s	54	42	36	24	24	20	10
Weighted Percentage of COs Contributio n to PO s	6.37	5.58	6.19	4.91	5.51	5.29	3.83

CO- PO MAPPING (COURSE ARTICULATION MATRIX)

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PO

SYLLABUS

UNIT-I: INTRODUCTION AND MATRIX FORMALISM

Inadequacy of classical Physics - Wave packets –Uncertainty relations-Schrodinger wave equation and probabilistic interpretation. Hilbert space – Dirac's bra and ket notation – Operators as matrices – Matrix form of wave functions – Unitary transformation: Change of basis – Properties of unitary transformations – Schrodinger picture – Heisenberg picture – Interaction picture

UNIT- II : SPHERICALLY SYMMETRIC SYSTEMS

Schrödinger's equation for spherically symmetric potentials – Three dimensional harmonic oscillator – Rigid rotator with free axis – Solution of wave equation and eigen function for the rotator – Rigid rotator in a fixed plane – The Hydrogen atom – φ , θ and r equations and their solutions – Energy eigen

13

(12 Hours)

(12 Hours)

values for the hydrogen atom – Degeneracy – The normal state of hydrogen atom

UNIT- III: INDEPENDENT APPROXIMATION METHODS

(12 Hours)

Time Independent Perturbation Theory in Non-Degenerate Case-Ground State of Helium Atom-Degenerate Case-Stark Effect in Hydrogen-Variation Method & its Application to Hydrogen Molecule- WKB Approximation.

UNIT-IV:TIME DEPENDENT PERTURBATION THEORY (12 Hours)

Time Dependent Perturbation Theory-First and Second Order Transitions-Transition to Continuum of States-Fermi Golden Rule-Constant and Harmonic Perturbation-Transition Probabilities-Selection Rules for Dipole Radiation-Collision-Adiabatic Approximation

UNIT- V: ANGULAR MOMENTUM

(12 Hours)

Orbital Angular Momentum-Spin Angular Momentum-Total Angular Momentum Operators-Commutation Relations of Total Angular Momentum with Components-Ladder Operators-Commutation Relation of Jz with J₊ and J₋ Eigen Values of J², Jz -Matrix Representation of J², Jz, J₊ and J₋Addition of Angular Momenta- Clebsch Gordon Coefficients-Calculation of Clebsch Gordon Coefficients for $j_1=1/2$, $j_2=1/2$.

Text Books:

- Quantum Mechanics, Aruldas, 2nd edition, 2013, PHI Learning Pvt. Ltd. [ISBN: 978-81-203-3635-3] (All Units)
- 2. Introduction to Quantum Mechanics –David J Griffiths– Pearson- 2nd edition- 2016. [ISBN: 978-93-325-4289-1]

Reference books:

- 1. **Quantum Mechanics,** Gupta, Kumar & Sharma, 34th Edition, 2017, Jai Prakash Nath Publications. (All units)
- 2. Advanced Quantum Mechanics, Satya Prakash, 2001, Kedar Nath Ram Nath Co., Meerut.
- 3. Quantum Mechanics, Leonard.I. Schiff, 1968, McGraw Hill 3rd Edition. [ISBN: 0-07-085643-5] (Unit II)
- 4. Quantum Mechanics, V. Devanathan, 2005, Narosa Publishing House, New Delhi.
- 5. A textbook of Quantum Mechanics, P.M. Mathews and Venkatesan, 27th reprint 2002, Tata McGraw Hill publishing company Ltd., New Delhi.

Web Reference:

- 1. https://ocw.mit.edu> coursesPDF Web result Chapter 5 The Dirac Formalism and Hilbert Spaces (unit 1)
- https://www.bbau.ac.in > deptPDF
 Web results Matrix representations of wave functions and operators ... (Unit 1)
- https://www.rpi.edu> lct4PDF
 Web results 4.1 Schrödinger Equation in Spherical Coordinates (unit 2)

- https://www.google.com/url?sa=t&source=web&rct=j&url=https://ocw.mit.edu/courses/physic s/8-06-quantum-physics-iii-spring-2018/lecturEnotes/MIT8_06S18ch4.pdf&ved=2ahUKEwiEg53JzqPzAhU0yzgGHZ1DAyIQFnoECDEQA Q&usg=AOvVaw0uqBxeeJUf3_kKF1uj3SU0 (unit 4 and 5)
- https://www.google.com/url?sa=t&source=web&rct=j&url=https://0space.org/file/13199/down load%3Ftoken%3D3MFpY12s&ved=2ahUKEwi80tXD0KPzAhXOV30KHWSQAgEQFnoEC DQQAQ&usg=AOvVaw1R_dXurAqOpeCnFtuREw30 (unit 5)

Category	Course Type	Course Code	Course Title Contact Hours		Credit				
Part – III	Core: IV	21PHP04	NUMERICAL METHODS & MATLAB PROGRAMMING		60	4			
Contact he	ours per we	eek: 5							
Year	S	al ;	Total Marks						
First		Ι		100					
COs	nent: On th	(mpletion of the co		nts will be a	ble to Knowledge Level			
CO1	remember the Differential equation by using variousNumerical methods and MATLAB basics,								
CO2	explain Ne Rungekutta Quadrature Graphics	Gauss	К2						
CO3			nethods and MAT	1		К3			

	programs and	Graphics w	vith 2D and	3D plots.								
CO4	correlate Diffe Giraffe's root various loops	square met	hods and M	IATLAB p		:	K4					
CO5	validate the di fundamentals interpretation	in Basic M	ATLAB pro	ogramming	and		K5					
CO6	Adapt numerical Methods in many mathematical fields and MATLAB programming in many computerize world, mber; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create											
K1 – Reme	ember; K2 – U	Jnderstand	; K3 – App	oly; K4 – A	nalyze; K5	5 – Evaluat	e; K6 – Create					
	CO- P	O MAPPIN	NG (COUR	SE ARTIO	CULATIO	N MATRE	X)					
CO – PO N	Aapping											
PQ Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7					
CO1	9	9	9	9	9	3	3					
CO2	9	9	9	9	9	3	3					
CO3	9	9	9	9	3	3	3					
CO4	9	9	9	3	3	1	1					
CO5	9	9	3	3	1	1	1					
CO6	9	9	3	3	1	1	1					
Total Contribut n of COs t Pos	54	54	42	36	26	12	12					
Weighted Percentag of COs Contribut n to Pos	rcentage f COs atributio											
Level of co	rrelation: 0 –	No correla	ition; 1 – L	ow correla	ition; 3 – N	ledium cor	relation; 9- High					

correlation between COs and Pos

SYLLABUS

UNIT -I : NUMERICAL DIFFERENTIATION

Finding Roots of a Polynomial-Bisection Method-Newton Raphson Method-Solution of Simultaneous Linear Equation by Gauss Elimination Method (includes inverse of matrices)-Solution of Ordinary Differential Equation by Euler, Runge-Kutta Fourth Order Method for solving first order Ordinary Differential Equations.

UNIT-II: NUMERICAL INTEGRATION

Newton's cotes formula-Trapezoidal rule-Simpon's 1/3 rule- Simpon's 3/8 rule -Gaussian quadrature method-(2 point and 3 point formulae)-Giraffe's root square method for solving algebraic equation.

UNIT-III: FUNDAMENTALS

Introduction-MATLAB Features-Desktop windows: Command, Workspace, Command History, Array Editor and Current Directory -MATLAB Help and Demos- MATLAB Functions, Operators and Commands. Basic Arithmetic in MATLAB-Basic Operations with Scalars, Vectors and Arrays-Matrices and Matrix Operations-Complex Numbers- MATLAB Built-In Functions- Saving and loading data – Plotting simple graphs-Illustrative Examples

UNIT- IV : MATLAB PROGRAMMING

Control Flow Statements: if, else, else if, switch Statements-for, while Loop Structures-break Statement-Input/output Commands-Script "m" Files -Function "m" Files-Controlling Output -Language specific features – Advanced Data objects . Applications – (Programs about Linear Algebra - Curve fitting and Interpolation - Data analysis and Statistics - Numerical Integration - Ordinary differential equations – Nonlinear Algebraic Equations).

UNIT -V : MATLAB Graphics

2D Plots-Planar Plots, Log Plots, Scatter Plots, Contour Plots- Using subplot to Layout multiple graphs -Multiple Figures, Graph of a Function-Titles, Labels, Text in a Graph- Line Types, Marker types, Colors-3D Graphics-Curve Plots-Mesh and Surface Plots- Handle Graphics - Saving and printing Graphs – Errors - Illustrative Examples.

Text Books:

- 1. Numerical methods Kandasamy. P, Thilagavathi. K, Volume I and II, 2004, S. Chand and Company Ltd, New Delhi. (Units I & II)
- 2. Getting Started with MATLAB A Quick Introduction for Scientists and Engineers, RudraPratap, 2003, Oxford University Press. (Units III – V)
- 3. MATLAB An Introduction with Applications Amos Gilat, 2007, John Wiley & Sons, Inc., U.K. [ISBN: 978-81-26511394-9] (Units III – V)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

17

(12 Hours)

Reference Books:

- 1. Numerical methods in Science and Engineering, M.K. Venkataraman, 1996, National Publishing Co. Madras.
- 2. Engineering and Scientific Computations Using MATLAB, Sergey E. Lyshevski, 2003, JohnWiley &SonsInc, publication. [ISBN 0-471-46200-4]
- 3. Numerical Methods Using Matlab, John Mathews &Kurtis Fink,2006, Prentice Hall, New Jersey.
- 4. Introductory Methods of Numerical Analysis, S.S. Sastry, 2005, Prentice Hall.
- 5. Introduction to MATLAB 7 for Engineers, William John Palm, 2005, McGraw, Hill Professional.
- 6. Introduction to MATLAB 7, Dolores M. Etter, David C. Kuncicky, 2004, Prentice Hall.

Web Reference:

 $1.\ http://demo.prahu-hub.com/A2C1ED269A17F/numerical-methods-by-kandasamy-thilagavathy-gunavathy.pdf$

 $2.\ https://rahulpatel121.files.wordpress.com/2018/07/s-s-sastry-introductory-methods-of-sa$

numerical-analysis-2012-phi-learning-pvt-ltd.pdf

 $\label{eq:2.1} 3. \ https://www.researchgate.net/profile/Hazim_Tahir/post/How-can-I-fit-a-curve-to-data-from-a-thermodynamic-model-like-$

 $\label{eq:NRTL/attachment/59d63d25c49f478072ea8502/AS\%3A273757480914957\%401442280277251/down load/MATLAB_+An+Introduction+with+Ap+-+Amos+Gilat.pdf$

Category	Course Type	Course Code	Course Title		Contact Hours	Credit		
Part – III	Core:V Elective I	21PHP05A	ESSENTIA NANOSCI		48	3		
Contact ho	Contact hours per week: 4							
Year	YearSemesterInternal MarksExternal MarksTotal Marks							
First I 50 50 100								
	Preamble: The aim is to provide the basic knowledge about basics of nano science and technology and to acquire the knowledge about synthesis methods and characterization techniques and its							

٦

application	ns						
CO State	ment: On the su	ccessful comple	etion of th	e course	, students v	vill be a	ble to
COs		COS	tatement				Knowledge
COS		0.5	latement				Level
CO1		c concepts of Na roduction to pol	and	K1			
CO2	explain the Na importance and	no material and d applications.	its struct	ure, prop	perties,		K2
CO3	apply the fabri particles	cation methods	to synthe	sis the no	ew nano		К3
CO4		ical interactions acteristics of ser		K4			
CO5	•	particles dimen particles and c	,	К5			
CO6		p particles and n l medical, other				olems	K6
K1 – Ren	nember; K2 – U	Inderstand; K3	- Apply	; K4 – A	nalyze; K	5 – Eva	luate; K6 – Create
	CO-PO) MAPPING (COURSE	ARTIC	CULATIO	N MAT	'RIX)
CO – PO	Mapping						
PQ Co	s PO 1	PO 2	PO 3	PO 4	PO 5	PO	6 PO 7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	3	3	3	3
CO3	9	2	3				
CO4	9	2	3				
CO5	9	9	3	3	2	1	3
CO6	9	9	3	3	3	3	1

Total Contributio n of COs to Pos	54	54	42	30	23	14	16
Weighted Percentage of COs Contributio n to Pos	3.33	3.91	6.08	3.86	2.03	1.52	2.22

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

SYLLABUS

UNIT -I: EVOLUTION OF NANOSCIENCE AND NANOTECHNOLOGY (9 Hours)

History of Nanoscience and Nanotechnology – Ancient, Medieval and Modern period – Terms and Definitions – Scale of materials – macro, micro and nanoscale – pioneers and contributors in Nanoscience and nanotechnology – Fabrication methods – Top-down and bottom-up approaches (Principles and types) – Nanoscience and nanotechnology practiced by nature –Inspirations from nature – Natural nanomaterials – Inorganic, organic and biological origin.

UNIT -II : NANOMATERIALS

Structure, properties and importance of the following Nanomaterials - Metallic nanoparticles – Semiconductor quantum dots, core-shell nanoparticles - carbon based nanomaterials – fullerenes, carbon nanotubes (single walled and multi walled) and graphenes – Supramolecules – Dendrimers, micelles and reverse micelles – Nanoporous Materials. (Synthesis of the nanomaterials not included)

UNIT- III: POLYMERIC NANOMATERIALS

Introduction to polymers – classification of polymers – types of polymerization processes – Block copolymers - Glass transition temperature of Polymers – Structure, properties and importance of selected synthetic and Biopolymers – Polystyrene, Polyvinyl alcohol, Polystyrene sulphonate, Polyethylene glycol, Polyhydroxy alkanoate, Polylactic acid and Chitosan – Conducting polymers – Introduction, principle of conduction and different types of conducting polymers.

UNIT- IV : PROPERTIES AT THE NANOSCALE – I

Comparison of properties at bulk and nano – Surface and Volume – Surface energy – Surface stabilization – Surface energy minimization mechanisms – Application of classical thermodynamics 133 to nanomaterials (Small system thermodynamics) – Chemical interactions at Nanoscale.- Primary interactions (Ionic, Covalent and Metallic bonds) – Secondary interactions – Electrostatic interaction, Hydrogen bonding, Van-der waals attraction, hydrophobic effect.

(9 Hours)

(10 Hours)

(10 Hours)

UNIT- V: PROPERTIES AT THE NANOSCALE – II

(10 Hours)

Optical properties in metals, semiconductors and insulators- Photoluminescence - Cathode luminescence- Electro luminescence- Fluorescence- Phosphorescence- Surface Plasmon resonance and optical properties in metallic nanoparticles – Quantum confinement and emission characteristics of semiconductor nanocrystals – optical properties of core-shell nanoparticles – Mechanical, thermal and electrical properties of carbon based nanomaterials (CNT & graphenes) – Guest-Host relationship and Molecular recognition in supramolecules.

Text Books

- 1. Nanoscience and Nanotechnology M. S. RamachandraRaoShubrasingh [ISBN: 978 81 265 4201 7]. (Units I, II and III)
- 2. **Principles of Nanoscience and Nanotechnology -** M. A. ShahTokeerAhmad, Narosa publishing home pvt. Ltd., [ISBN: 978 81 8487 072 5]. (Units IV and V)

Reference Books

- 1. Nanotechnology, Er. RakeshRathi, 2009-15, S. Chand and Co. Pvt. Ltd.
- 2. Nanotechnology Science Innovations and Oppurtunity, Lynn E.Foster.

Web Reference:

- 1. http://www.lkouniv.ac.in
- 2. http://www.trl.lab.uic.edu
- 3. http://www.nanosensesri.com
- 4. http://www.nanoyou.eu
- 5. http://www.web.pdx.edu

Category	Course Type	Course Code	Course Title		Contact Hours	Credit	
Part – III	Core: v Electiv e: I	21PHP05B	RADIAT PHYSI		48	3	
Contact ho	Contact hours per week: 4						
Year	S	emester	Internal Marks	Externa Marks		Total Marks	
First		Ι	50	50		100	

Preamble: The aim is to provide deeper knowledge and understanding of Radiation Physics and to learn information about their principles and methods.

COs	CO Statement	Knowledge
CUS		Level
CO1	recall an introduction of Radiation physics, basics of radiotherapy, environmental radioactivity introductions	K1
CO2	elucidate the various types of interactions between the elementary particles, linear accelerators and measuring equipments	K2
CO3	identify the particle detectors of gas electron multiplier, surface photoemission detector and semiconductor detector	K3
CO4	compare attenuation with absorption factors of medicine in the measuring equipment	K4
CO5	evaluate toxic agent and mitigating internal radiation hazards, airborne radioactivity	K5
CO6	bring out the interaction of the particles using particle detectors, prepare to protect human beings from organizational plan, laboratory procedure for protection of radiation	K6

K1 – Remember;K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	3
CO2	9	9	9	3	3	3	3
CO3	9	9	9	9	3	2	3
CO4	9	9	9	3	3	2	3

CO5	9	9	3	3	2	1	3
CO6	9	9	3	3	3	3	1
Total Contributio n of COs to Pos	54	54	42	30	23	14	16
Weighted Percentage of COs Contributio n to POs	3.33	3.91	6.08	3.86	2.03	1.52	2.22

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

Unit –I: BASIC RADIATION PHYSICS

Introduction to radiation Physics- Atomic and Nuclear structure- Electron interaction- Photon interaction- Classification of forces in nature, fundamental particles, radiation- Atomic and nuclear structure- Bohr's model of the hydrogen atom- Radioactivity- Modes of radioactive decay- Electron Interaction- Photon Interaction.

Unit –II: RADIATION AND PARTICLE DETECTOR

Interaction of particles and radiation with matter- Photoelectric and Compton effect- Gas Electron Multiplier (GEM)- Detection of neutrons- Surface photoemission detectors- Photo cathodes and Photo tubes- Semiconductor detectors.

Unit- III : RADIOACTIVITY IN THE ENVIRONMENTAL MEDIA

Introduction to environmental radioactivity- Airborne radioactivity- Production and Propagation of Airborne radioactivity by tall & short stacks- Water Activation- Geological Media Activation- The Propagation of Radio nuclides Through Geological Media.

Unit -IV : RADIOACTIVITY IN MEDICINE

Basics of radiotherapy- Linear accelerators- Measuring equipments- Treatment planning & process-Dependence of photon energy and atomic number- attenuation and absorption.

Unit -V : RADIATION PROTECTION

Human Factors- Environmental Factors- Toxic Agents, such as radioactive Material- Organizational Plan for Radiation Protection- Radiation Lab Protection Procedures- Accident Anticipation-

(9 Hours)

(10 Hours)

(9 Hours)

(10 Hours)

(10 Hours)

Mitigating Internal Radiation Hazards.

Web References:

- 1. http://www-naweb.iaea.org/nahu/DMRP/documents/Chapter1.pdf
- 2. <u>https://www.asc.ohio-state.edu/honscheid.1/s12-780/references/turku_lecturenotes.pdf</u>
- 3. https://www-esh.fnal.gov/TM1934_PDF_Files/TM_1934_Revision_9B.pdf
- 4. <u>http://www.imre.ucl.ac.be/rpr/sv2012/RDTH3120-partie1.pdf</u>
- 5. <u>http://www.ehs.washington.edu/rsotrain/radprotectionprinciples/table_of_contents.pdf</u>

Category	Course Type	Course Code	Course Title		Contact Hours	Credit
Part – III	Core: VI	21PHP06	QUANT MECHANI		60	4
Contact he	ours per wo	eek: 5				
Year	5	Semester	Internal Marks	Externa Marks		Total Marks
First		II	50	50		100
		e successful co	particles and their ompletion of the co CO Statement			
						Level
CO1	recite the c particles	lefinitions of so	cattering amplitude	e and idention	cal	K1
CO2	-	ne scattering prophetical prophetics of app	•	K2		
CO3	field appro	eximation and a	symmetric wave apply approximations scattering cross se	on methods		К3

CO4	justify probability and current densities and negative energy states from relativistic wave equations	К4
CO5	quantize classical and quantum mechanical equations of motions.	K5
CO6	construct symmetric and anti symmetric wave functions	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	3	9	3	3
CO2	9	9	9	3	9	3	3
CO3	9	3	3	3	3	3	1
CO4	3	3	3	1	3	1	1
CO5	1	1	1	1	1	1	1
CO6	1	1	1	1	1	1	1
Total Contributio n of COs to POs	32	26	26	12	26	12	10
Weighted Percentage of COs Contributio n to POs	3.77	3.45	4.47	2.45	5.97	3.17	3.83

correlation between COs and POs

SYLLABUS

Unit –I : SCATTERING THEORY

Scattering Amplitude - Expression in terms of Green's Function - Born Approximation and its Validity - Partial Wave Analysis - Phase Shifts – Scattering by Coulomb and Yukawa Potential

Unit –II : APPLICATION TO ATOMIC STRUCTURE

Central Field Approximation - Thomas Fermi Model –Hartree's Self Consistent Model – Hartree Fock Equation - Alkali Atoms - Doublet Separation –Intensities - Complex Atoms - Coupling Schemes

Unit –III: RELATIVISTIC WAVE EQUATION

Klein Gordon Equation - Plane Wave Equation - Charge and Current Density - Application to the study of Hydrogen Like Atoms - Dirac Relativistic Equation for a Free Particle - Dirac Matrices - Dirac Equation in Electromagnetic Field - Negative Energy States.

Unit -IV: IDENTICAL PARTICLES AND SPIN

Identical particles – Symmetric and anti-symmetric wave functions – Construction of symmetric and antisymmetric wave functions – Pauli's exclusion principle – Physical significance – Pauli's spin operator – Commutation relations

Unit –V: QUANTUM FIELD THEORY

Quantization of Real Scalar wave Field – Quantization of Complex Scalar wave Field - Quantization procedure for particles - Classical Lagrangian Equation -Classical Hamiltonian Equation - Field Quantization of the Non - Relativistic Schrodinger Equation - Creation, Destruction and Number Operators.

Text Book :

- 1. **QuantumMechanics** -Aruldas, 2nd edition, 2013, PHI Learning Pvt. Ltd. [ISBN: 978-81-203-3635-3] (All Units)
- 2. Quantum Mechanics -Leonard.I. Schiff, 1968, McGraw Hill 3rd Edition. [ISBN: 0-07-085643-5] (Unit II)
- Introduction to Quantum Mechanics David J Griffiths, Pearson- 2nd edition- 2016. [ISBN: 978-93-325-4289-1]

Reference Books

- 1. A Text Book of Quantum Mechanics-P.M. Mathews & K. Venkatesan-Tata McGraw Hill 29th Reprint 2002
- 2. Quantum Mechanics-Devanathan-Narosa Publishing-New Delhi, 2005
- 3. **Quantum Mechanics**-A.K. Ghatak and S. Loganathan- McMilan India 4th Edition, 1999
- 4. Introduction to Quantum Mechanics David J Griffiths- Addison Wesley 2nd edition

26

(**12 Hours**) mation and

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Web Reference:

- 1. http://juser.fzjuelich.de/record/20885/files/A2_Bluegel.pdf&ved=2ahUKEwienuaa4aPzAhUcIbcAHUd QANMQFnoECAMQAQ&usg=AOvVaw0CEdb862rnJdihdmzyWiAf(unit 1)
- http://scipp.ucsc.edu/~dine/ph216/atomic_physics.pdf&ved=2ahUKEwjEgJC-4aPzAhWvILcAHRglDcEQFnoECAMQAQ&usg=AOvVaw1PQGGLKpoQ6xni51I0riX N (unit 2)
- https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notesgk.pdf&ved=2ahUKEwiZ1erj4aPzAhUc4zgGHX6KAGsQFnoECAMQAQ&usg=AOvVa w0-SNbiYJFpgVJHTdXhyqsW(unit 3)
- 4. https://www.feynmanlectures.caltech.edu/III_04.html(unit 4)
- 5. https://www.britannica.com/science/quantum-field-theory(unit 5)

Category		urse ype	Course Code	Course Title		Contae Hours		Credit	
Part – III	Core	: VII	21PHP07	ADVANO ELECTRO	-	60		4	
Contact he	ours p	er wee	ek: 5		mes				
Year		S	emester	Internal Marks	Externa Marks			Total Marks	
First			II	50	50		100		
gain knowl advanced le	edge a evel of	about f f digita	abrication and ll electronics.		f Integrated	Circuits	and	niconductor devices, to to learn the concepts of ole to	
COs	CO Statement							Knowledge Level	
CO1		call the logic gates, basic types of transistors, counters ,shift K1 K1			K1				
CO2	elucio	date to	late to make integrated circuits, JFET, MOSFET, SCR, K2			ted circuits, JFET, MOSFET, SCR,			

	optoelectronic devices by chronologically order	
CO3	examine basic laws of Boolean algebra, De- Margan's theorem and types of flip- flops, A/D converter, D/A converter	К3
CO4	analyze the results of integrated circuits and non-linear analog system	K4
CO5	verify the opto electronic devices such as photo register, photo diode, photo transistor and field effect transistors.	К5
CO6	create a new design of synchronous counters by using of flip- flop, karnaugh map	K6
K1 Don	 nombor: K2 Undorstand: K3 Apply: K4 Applyzo: K5 Fy	aluata: K6 Craata

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	9	3	3
CO3	9	9	9	9	9	3	3
CO4	9	9	9	9	9	3	3
CO5	9	9	9	9	3	3	1
CO6	9	9	3	3	3	1	1
Total Contributio n of COs to POs	54	54	48	48	36	22	20
Weighted Percentage	6.37	7.18	8.26	9.83	8.27	5.82	7.66

of COs Contributio n to POs								
Level of corre	lation: 0 –	No correla	tion; 1 – L	ow correla	tion; 3 – N	ledium cor	relation; 9- I	ligh
correlation between COs and POs								
SYLLABUS								
Unit -I: SEMICONDUCTOR DEVICES (12 hours)								
Field effect transistors – JFET bias line and load line – MOSFET construction and Symbols – FET as								
a Voltage Va	ariable Res	sistor-Com	non Sourc	e Amplifi	er at Higl	n Frequenc	cies-Common	Drain
Amplifier at	High Free	uencies-Sil	icon Cont	rolled Rec	tifier (SCI	R) Charact	eristics-SCR	Power

Unit–II: INTEGRATED CIRCUITS-FABRICATION AND CHARACTERISTICS (12 hours) Integrated circuit technology – Basic monolithic circuits – Epitaxial growth – Masking and etching – Diffusion of impurities – Transistor for monolithic circuits – Monolithic diodes – Integrated resistors-Integrated capacitors – Monolithic circuit layout – Additional isolation methods – LSI and MSI – Metal semiconductor contact.

Control- Tunnel Diode -Optoelectronics: Photo Resistor-Photo Diode-Photo Transistor-LED-Photo

Unit –III: INTEGRATED CIRCUITS AS ANALOG SYSTEM BUILDING BLOCKS (12 hours)

Linear analog systems: Basic Op.Amp. applications – Sign changer – Scale changer – Phase shifter – Summing amplifier – Voltage to current converter – Current to voltage converter – DC voltage follower – Differential DC amplifier – Stable AC coupled amplifier – Analog integration and differentiation – Electronic analog computation

NONLINEAR ANALOG SYSTEMS: Comparator – Sample and hold circuits – D/A converter: Binary weighted resister and ladder type – A/D converter: Successive type and Dual-slop converters

Unit –IV:

Voltaic Effect-Solar Cells.

(12 hours)

FLIP-FLOPS: S-R, Clocked S-R, D, J-K, T, Master-Slave J-K flip-flops – Their state diagrams and characteristic equations – Edge triggering in flip-flops

LOGIC GATES: OR, AND, NOT, NOR and NAND gates, Exclusive OR gate – NAND and NOR as Universal gates.

BOOLEAN ALGEBRA AND MINIMIZATION TECHNIQUES: Basic laws of Boolean algebra – De Morgan's theorems – Adder, Subtractor, Comparator, Decoder / Demultiplexer - Sum of products and Product –of-sums - Karnaugh map (up to four variables only) –Don't care

Unit- V: SYNCHRONOUS COUNTERS

(12 hours)

Design of Synchronous Counters: Design of MOD-3, MOD-6 ,and MOD-10 counters using JK Master-slave flip-flops only – Register – 4 bit shift Register – Serial-in serial-out, Serial-in Parallel-out, Parallel-in Serial-out and Parallel-in Parallel-out – Design of four bit self-correcting ring counter using D-flip-flop

Text Book :

- 1. **Principles of Electronics** -V.K.Mehta, Rohit Mehta, S.Chand and Company Pvt Ltd,[ISBN: 81-219-2450-2].(Unit I)
- 2. Modern Physics -R.Murugeshan, (2013), S.Chand and CompantPvt Ltd.
- 3. **Integrated electronics** Jacob Millman, Christos Halkias, Chetan D Parikh, Second Edition, Tata McGraw hill.(Unit II & III)
- 4. **Digital Circuits and Design** -S.Salivahanan, S.Arivazhagan, Third Edition, Vikas Publishing house Pvt Ltd.(Unit IV & V)

Reference Books

- 1. Handbook of Electronics, Gupta and Kumar.
- 2. Digital Fundamentals, Floyd-UBS 1600.
- 3. Digital Principles and Applications, Malvino& Leach, McGraw Hill.
- 4. Applied Electronics, R S Sedha.

Web Reference:

1. http://web.pdx.edu/~pmoeck/books/Tipler_Llewellyn.pdf

2. <u>https://dokumen.tips/documents/integrated-electronics-jacob-millman-and-christos-hallkiaspdf.html</u>

Category	Cou Ty	ırse pe	Course Code	Course Title		Contact Hours	Credit
Part – III	Core:	VIII	21PHP08	SOLAR PHYSICS		60	3
Contact hours per week: 5							
Year		Sei	mester	Internal Marks	Externa Marks		Total Marks
First			II	50 50 100			100
Preamble: The aim is to provide the students an overview of the energy problem faced by the current generation, underline the importance of renewable energy sources and to get a thorough knowledge							

about renewable solar energy technology.

CO Statement: On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level
201	recall the facts about Energy Sources and its availability and basics of solar energy	K1
CO2	narrate the principles of solar cells, solar radiation measurements	К2
CO3	Seek different applying technique behind solar cell and creates innovative ideas.	К3
CO4	explore the causes and relationship between different types of solar cells. Helps in evaluating performance of solar cell	K4
CO5	create new innovation on the basis of Solar energy such as solar cell and solar greenhouse	K5
CO6	Develop new proposal on the basis of solar energy principle	K6

CO – PO Mapping

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	9	9
CO2	9	9	3	9	3	9	9
CO3	9	9	3	3	9	9	9
CO4	9	3	3	3	3	3	3
CO5	9	3	3	3	1	3	3

CO6	9	3	3	3	3	3	9
Total Contributio n of COs to POs	45	36	24	30	22	36	42
Weighted Percentage of COs Contributio n to Pos	5.31	4.78	4.13	6.14	5.05	9.52	16.09

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High

correlation between COs and POs

SYLLABUS

Unit –I: INTRODUCTION TO ENERGY SOURCES

Energy sources - World and Indian energy future - Types of energy sources - World energy futures -Energy sources and their availability.

Unit –II: RENEWABLE ENERGY

Prospects of renewable energy sources - solar energy - Its uses and barriers in the implementation of renewable energy systems. Indian research and perspectives.

Unit- III:

SOLAR ENERGY: Solar radiation at the Earth's Surface - Solar constant.

SOLAR RADIATION MEASUREMENTS: Solar energy measuring equipments – pyrheliometers – pyranometers.

Unit- IV: SOLAR CELLS

Solar cells for direct conversion of solar energy to electric energy - Solar cell parameter - Solar cell electrical characteristics - Efficiency - Single crystal silicon solar cells - Polycrystalline silicon solar cells - Cadmium sulphide solar cells.

Unit -V: APPLICATIONS OF SOLAR ENERGY

Solar water heating - space heating and space cooling - solar photo voltaics - agricultural and industrial process heat - solar distillation - solar pumping- solar furnace - solar water heater - solar cooking - solar green house.

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Text Book :

- 1. **Solar Energy Utilisation** G.D.Rai, 1987, Khanna Publishers, New Delhi, 3rd Edition. (All Units)
- 2. Non-Conventional Energy Sources- B.H.Khan, 2006, Tata McGraw Hill. [ISBN 0-07-060654-4]
- 3. Non-Conventional Energy Sources and Utilisation Er. R. K. Rajput, (2014) S.Chand& Company Pvt. Ltd, [ISBN 81-219-3971-2].

Non-Conventional sources of Energy- G.D.Rai, 5th Edition, Khanna Publishers, New Delhi.

[ISBN: 81-7409-073-8]

Reference Books

- 1. **Renewable Energy**, Godfrey Boyle, Oxford University Press in association with the Open University, 2004, [ISBN: 9780199261789]
- 2. Principles of Solar Engineering F. Kreith and J.F. Kreider, 1978, Tata McGraw Hill.
- 3. Solar Energy, M.P.Agarwal, 1983 S. Chand and Co., New Delhi.
- 4. Solar Energy, S.P.Sukhatme, 1996, Tata McGraw Hill. [ISBN: 0-07-462453-9]

Web Reference:

<u>1. http://oro.open.ac.uk > ...</u>

- 2. <u>Renewable energy. 2nd edition Open Research Online</u>
- 3. https://www.ebooknetworking.net/ebooks/principles-of-solar-engineering.html
- 4. <u>http://mguniversity.ac.in/syllabus/ug_sec/VI%20Semester%20Skill%20Enhancement%20Cour_ses.pdf</u>

Category	Course Type	Course Code	Course Title		Contact Hours	Credit		
Part-III	Core : IX	21PHP09	ADVANCED PHYSICS PRACTICAL-I		120	4		
Contact hours per week: 5								
Year	S	emester	Internal Marks	Externa Marks		Total Marks		
First		I & II	50 50 100			100		
Preamble: The aim is to provide the students better practical knowledge of general Physics experiments, learn about handling of experiments and to know about different equipment used								

'Os	CO Statement	Knowledge					
000		Level					
CO1	identify the basic concepts of experiments related to theories in Modern Physics	K1					
	recognize various commands and formulae in MATLAB						
CO2	illustrate the working principles of various experimental setups	K2					
CO3	use different experimental setup to study various physical properties of solids and liquids						
	apply the formulae to calculate the output values for various K3						
	implement the procedures of solving physical problems to write and process the MATLAB programs						
CO4	compare and contrast the various methods of determination of various physical constants and values						
	correlate the relations between theoretical values and experimental observations	K4					
CO5	observe the output values of the physical process using required experimental setups	<i>V5</i>					
	assess rectify the errors if any in the execution of MATLAB programs	K5					
CO6	design the desired circuit to carry out the required experiment and justify the observed values	17.6					
	rewrite the MATLAB program based on the requirements of the specific problem	K6					
1 – Rer	nember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evalu	ate; K6 – Creat					
	CO- PO MAPPING (COURSE ARTICULATION MATE	RIX)					
0 <u>– P</u> O	Mapping						

PQ COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7		
CO1	9	9	9	9	9	9	3		
CO2	9	9	9	9	9	9	3		
CO3	9	9	3	3	9	9	1		
CO4	9	9	3	3	3	3	1		
CO5	9	9	3	3	3	3	1		
CO6	3	3	0	3	0	3	0		
Total Contribut n of COs POs	48	48	27	30	33	36	9		
Weighted Percentag of COs Contribut n to POs	ge io	6.38	4.64	6.14	7.58	9.52	3.44		
	Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs								
			ourse Cont	LLABUS					
S.No		In	structional Hours						
1	Young's Mod	lulus-Ellipti							
2	Young's Mod	lulus-Hyper							
3	Viscosity of a	Liquid-Ma		120					
4	Stefan's Cons	stant							
5	Rydberg's Co	onstant-Sola	r Spectrum						

6 Thickness of Wire by Air Wedge and Diffraction 7 Determination of Audio Frequencies-Bridge Method 8 Thermionic Work Function 9 Thermal Conductivity-Forbe's Method 10 Electronic Charge 'e' by Millikan's Oil Drop Method 11 Electronic Specific Charge 'e/m' by Thomson's Method 12 Thermistor-Temperature Coefficient and Band Gap Energy 13 Determination Specific Heat of a Liquid-Ferguson's Method 14 Biprism on Optical Bench-Determination of Wavelength 15 He-Ne Laser –Measurement of Wavelength using reflectancegrating. 16 Babinet's Compensator 17 LG Plate-Resolving Power 18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential Equations			
8 Thermionic Work Function 9 Thermal Conductivity-Forbe's Method 10 Electronic Charge 'e' by Millikan's Oil Drop Method 11 Electronic Specific Charge 'e/m' by Thomson's Method 12 Thermistor-Temperature Coefficient and Band Gap Energy 13 Determination 13 Determination 14 Biprism on Optical Bench-Determination of Wavelength 15 He-Ne Laser –Measurement of Wavelength using reflectancegrating. 16 Babinet's Compensator 17 LG Plate-Resolving Power 18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	6	Thickness of Wire by Air Wedge and Diffraction	
9 Thermal Conductivity-Forbe's Method 10 Electronic Charge 'e' by Millikan's Oil Drop Method 11 Electronic Specific Charge 'e/m' by Thomson's Method 12 Thermistor-Temperature Coefficient and Band Gap Energy 13 Determination 13 Determination 14 Biprism on Optical Bench-Determination of Wavelength 15 He-Ne Laser – Measurement of Wavelength using reflectancegrating. 16 Babinet's Compensator 17 LG Plate-Resolving Power 18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	7	Determination of Audio Frequencies-Bridge Method	
10Electronic Charge 'e' by Millikan's Oil Drop Method11Electronic Specific Charge 'e/m' by Thomson's Method12Thermistor-Temperature Coefficient and Band Gap Energy13Determination13Specific Heat of a Liquid-Ferguson's Method14Biprism on Optical Bench-Determination of Wavelength15He-Ne Laser –Measurement of Wavelength using reflectancegrating.16Babinet's Compensator17LG Plate-Resolving Power18Thickness of the wire by diffraction19Fabry-Perot Interferometer-Study of Fine Structure20Geiger Muller Counter-Determination of Half Life of 'In'21MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations22MATLAB Programming – Solution of Ordinary Differential	8	Thermionic Work Function	
11 Electronic Specific Charge 'e/m' by Thomson's Method 12 Thermistor-Temperature Coefficient and Band Gap Energy 13 Determination 13 Specific Heat of a Liquid-Ferguson's Method 14 Biprism on Optical Bench-Determination of Wavelength 15 He-Ne Laser –Measurement of Wavelength using reflectancegrating. 16 Babinet's Compensator 17 LG Plate-Resolving Power 18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	9	Thermal Conductivity-Forbe's Method	
12 Thermistor-Temperature Coefficient and Band Gap Energy 13 Determination 13 Specific Heat of a Liquid-Ferguson's Method 14 Biprism on Optical Bench-Determination of Wavelength 15 He-Ne Laser –Measurement of Wavelength using reflectancegrating. 16 Babinet's Compensator 17 LG Plate-Resolving Power 18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'ln' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	10	Electronic Charge 'e' by Millikan's Oil Drop Method	
13Determination13Specific Heat of a Liquid-Ferguson's Method14Biprism on Optical Bench-Determination of Wavelength15He-Ne Laser –Measurement of Wavelength using reflectancegrating.16Babinet's Compensator17LG Plate-Resolving Power18Thickness of the wire by diffraction19Fabry-Perot Interferometer-Study of Fine Structure20Geiger Muller Counter-Determination of Half Life of 'In'21MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations22MATLAB Programming – Solution of Ordinary Differential	11	Electronic Specific Charge 'e/m' by Thomson's Method	
13 Specific Heat of a Liquid-Ferguson's Method 14 Biprism on Optical Bench-Determination of Wavelength 15 He-Ne Laser –Measurement of Wavelength using reflectancegrating. 16 Babinet's Compensator 17 LG Plate-Resolving Power 18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	12	Thermistor-Temperature Coefficient and Band Gap Energy	
Specific Heat of a Liquid-Ferguson's Method14Biprism on Optical Bench-Determination of Wavelength15He-Ne LaserMeasurement of Wavelength using reflectancegrating.16Babinet's Compensator17LG Plate-Resolving Power18Thickness of the wire by diffraction19Fabry-Perot Interferometer-Study of Fine Structure20Geiger Muller Counter-Determination of Half Life of 'In'21MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations22MATLAB Programming - Solution of Ordinary Differential	12	Determination	
15He-Ne Laser -Measurement of Wavelength using reflectancegrating.16Babinet's Compensator17LG Plate-Resolving Power18Thickness of the wire by diffraction19Fabry-Perot Interferometer-Study of Fine Structure20Geiger Muller Counter-Determination of Half Life of 'In'21MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations22MATLAB Programming – Solution of Ordinary Differential	15	Specific Heat of a Liquid-Ferguson's Method	
15 reflectancegrating. 16 Babinet's Compensator 17 LG Plate-Resolving Power 18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	14	Biprism on Optical Bench-Determination of Wavelength	
17 LG Plate-Resolving Power 18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	15	· •	
18 Thickness of the wire by diffraction 19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	16	Babinet's Compensator	
19 Fabry-Perot Interferometer-Study of Fine Structure 20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	17	LG Plate-Resolving Power	
20 Geiger Muller Counter-Determination of Half Life of 'In' 21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	18	Thickness of the wire by diffraction	
21 MATLAB Programming-Roots of a Quadratic Equation & Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	19	Fabry-Perot Interferometer-Study of Fine Structure	
21 Solution of a System of Linear Equations 22 MATLAB Programming – Solution of Ordinary Differential	20	Geiger Muller Counter-Determination of Half Life of 'In'	
	21		
	22		
23 MATLAB Programming -Runge-Kutta Method	23	MATLAB Programming -Runge-Kutta Method	
24 MATLAB Programming -Newton-Raphson Method	24	MATLAB Programming -Newton-Raphson Method	
25 MATLAB Programming-Mean, Median & Standard Deviation	25	MATLAB Programming-Mean, Median & Standard Deviation	
26 MATLAB Programming-Curve Fitting & Interpolation	26	MATLAB Programming-Curve Fitting & Interpolation	

27	MATLAB Programming-Matrix Summation, Subtraction and Multiplication	
28	MATLAB Programming-Matrix Inversion and Solution of	
28	Simultaneous Equations	
29	He-Ne Laser – Measurement of refractive index of liquids.	
30	He-Ne Laser – Power distribution measurement.	
31	He-Ne Laser – Thickness of Wire	

Category		urse ype	Course Code	Course T	ïtle	Conta Hour		Credit
Part – III	Coi	re: X	21PHP10	GENER ELECTRO PRACTICA	NICS	120		4
Contact ho	ours p	oer wee	ek: 5					
Year		S	emester	Internal Marks	Externa Marks			Total Marks
First			I & II	50	50			100
experiment	s, lea	rn abou	t handling of	experiments and t	o know abo	ut differ	ent	
CO Staten	nent:	On the	successful co	mpletion of the co	ourse, studei	nts will t	be at	
COs			(CO Statement				Knowledge Level
CO1	comp	ponents	-	basic electrical and types of circuits r in MATLAB		rious		K1
CO2	inter	pret the	working prin	ciples of the elect	ronic circui	ts		K2

	express the applications of diodes, OP-AMP, BJT, SCR, FET and UJT	
CO3	use CRO and AFO to analyze and study various waveforms and its amplitude and frequency controls apply the circuit equations to calculate the output values for various electronic circuits relate the electronic circuit analysis to write and process the MATLAB program.	К3
CO4	compare and contrast the various circuits for the specific application correlate the relations between theoretical values and experimental observations construct various electronic circuits using diodes, OP-AMP, BJT, SCR, FET and UJT	K4
CO5	measure the output values of the constructed circuits using required tools assess rectify the errors if any in the execution of MATLAB programs	K5
CO6	design the desired circuit based on the parameters and properties of the various electronic components rewrite the MATLAB program based on the requirements of the specific problem	K6

• Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create;

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

PQ COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	3	3	9	9	1
CO4	9	9	3	3	3	3	1
CO5	9	9	3	3	3	3	1
CO6	3	3	0	3	0	3	0

Total Contributio n of COs to POs	48	48	27	30	33	36	9
Weighted Percentage of COs Contributio n to POs	5.66	6.38	4.64	6.14	7.58	9.52	3.44

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

ANY FIFTEEN(15) EXPERIMENTS ONLY

EXAMINATION AT THE END OF SECOND SEMESTER

S.No	Course Content	Instructional Hours
1	Design of Regulated and Dual Power Supply.	
2	Basic Logic Gates-Digital IC's	
3	Parameters of Op-Amp	
4	Design of Wave Form Generators- using Op-Amp.	
5	Design of Phase-Shift Oscillator- Op-Amp	
6	Design of Wein's Bridge Oscillator- Op-Amp	120
7	Design of Active Filters- Op-Amp	
8	Design of Differential Amplifier- Op-Amp	
9	Sign Changer, Scale Changer, Adder and Subtractor- Op-Amp	
10	Design of UJT Relaxation Oscillator	
11	CRO-Differentiating, Integrating, Clipping and Clamping	

	Circuits, Square Wave Testing
12	SCR-Characteristics and an Application
13	Source Follower
14	Amplifier-Inverting, Non-Inverting, Voltage Follower- Op- Amp
15	Characteristics of FET
16	Digital IC's- Counters
17	Schmitt Trigger using discrete components and OP-AMP/ Timer 555
18	D/A converter using Op. Amp
19	MATLAB Programming-Charging of a Capacitor in an RC Circuit with three Time Constants
20	MATLAB Programming- Full Wave Rectifier-Determination of (a) Peak-to-Peak Value of Ripple Voltage, (b) DC Output Voltage (c) Discharge Time of the Capacitor (d) Period of Ripple Voltage
21	MATLAB Programming- Plot of Voltage and Current of an RLC Circuit under Steady State Conditions
22	MATLAB Programming- NPN Transistor-Plotting Input & Output Characteristics
23	MATLAB Programming-Frequency Response of a Low Pass Op-Amp Filter Circuit
24	MATLAB Programming-Diode-Plot of Forward Characteristics & Load Line Plot - Estimation of Operating Point.

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core: XI Elective:	21PHP11A	ASTRONOMY &	48	3

	II		ASTROPHY	ISICS		
Contact I	nours per	week: 4	1			
Year		Semester	Internal Marks	External Marks		Total Marks
First		II	50	50		100
learn info	rmation al	bout stars and gal	the students deepe laxies and to know	about the dest	ruction o	
						Knowledge
COs			CO Statement			Level
CO1		the history of astr and stellar evolu	ronomy, stars, gala tion	xies, compone	nts of	K1
CO2	general	theory of relativi	ighlights of Einste ty, fusion reaction and stages of stars	mechanism,	d	K2
CO3	-	n stars, compone	nomy, calculating nts of the Sun, gala		y and	K3
CO4	categori	ize the classificat	ion of galaxies and	stars		K4
CO5	evaluate	e the science behi	nd observation of	universe		K5
CO6	theories	, calculating the ition, types of ga	behind the geo and distance between th laxies and to formu	ne stars and its		К6
K1 – Ren	nember; l	K2 – Understand	d; K3 – Apply; K4	I – Analyze; K	K5 – Eva	lluate;K6 – Create
		CO-PO MAPPI	NG (COURSE AF	RTICULATIC	ON MAT	TRIX)
CO – PO	Mapping	5				

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	9	9	3	3	9	9	9
CO2	9	9	3	3	9	9	9
CO3	9	9	3	3	9	9	9
CO4	9	9	1	1	9	9	3
CO5	9	3	1	1	9	9	1
CO6	9	3	1	1	9	9	1
Total Contributio n of COs to Pos	54	42	12	12	54	54	32
Weighted Percentage of COs Contributio n to POs	3.33	3.04	1.25	1.71	4.77	5.86	4.44

SYLLABUS

UNIT- I: HISTORY OF ASTRONOMY

(9 Hours)

Introductory History of Astronomy-Ptolemy's Geocentric Universe-Copernicus' Heliocentric Universe- Tycho Brahe and Galileo's Observations- Kepler's Laws of Planetary Motion-Newtonian Concept Of Gravity-Highlights of Einstein's Special and General Theory Of Relativity-Curved Space Time-Evidence of Curved Space Time-Bending Of Light-Time Dilation

UNIT- II: STARS & GALAXIES

Stars and Galaxies-Distances-Trigonometric Parallax-Inverse Square Law-Magnitude of Stars-Apparent Magnitude-Absolute Magnitude and Luminosity-Color and Temperature- Composition of Stars-Velocity, Mass and Sizes of Stars-Types of Stars- Temperature Dependence-Spectral Types-Hertzsprung - Russell (HR) Diagram-Spectroscopic Parallax

UNIT -III: SUN AND ITS COMPOSITION

The Sun-Its Size and Composition- Sun's Interior Zones-Sun's Surface-Photosphere-Chromosphere-Corona-Sun's Power Source-Fusion Reaction Mechanism.

UNIT IV : GALACTIC ASTRONOMY

Milky Way Hubble classification of galaxies-Spiral galaxies, Elliptical galaxies, Irregular galaxies, Dwarf galaxies; Masses of galaxies-Rotation curves of galaxies; Dark matter

UNIT -V: LIVES AND DEATH OF STARS

Stellar Evolution-Mass Dependence-Giant Molecular Cloud-Protostar-Main Sequence Star-Subgiant, Red Giant, Supergiant-Core Fusion-Red Giant (Or) Supergiant- Planetary Nebula (Or) Supernova-White Dwarfs-Novae And Supernovae- Neutron Stars-Pulsars-Black Holes-Detecting Black Holes **Text Book :**

- 1. Lectures on Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqu, Department of Physics, University of Wisconsin-Milwaukee, U.S.A (Dated: Spring 2007).
- 2. Lecture Notes of Department of Physics University of Wisconsin-Milwaukee
- 3. Astrophysics of the Solar System- K.D. Abhayankar, University press (India) Pvt Ltd, January 24, 2017. [ISBN: 9788173719694].
- 4. An Introduction to Planetary Physics The terrastial Planets, William M. Kaula, 1968, Wiley, NewYork, Space Science text series.
- 5. Astrophysics of the Sun- HaroldZirin, Cambridge University Press, 23 June 1988.

Web Reference:

1. www.astronomynotes.com(All Units)

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – III	Core: XI Elective: II	21PHP11B	EXPERIMENTAL TECHNIQUES	48	3

(9 Hours)

(10 Hours)

(10 Hours)

(9 Hours)

Year		Seme	ster	Intern Mark		External Marks		Total Marks
First			100					
neasuring	g instrum	ents and	to handle	the various	electronic	bout the tec measuring e, students v	instrumer	
				1		,		Knowledge
COs			(CO Statem	ent			Level
CO1	recall Electro	ifiers,	K1					
CO2	explair Electro	,	K2					
CO3	apply t Measu	onic	К3					
CO4	analyz instrun		ications o	of various e	lectronic r	neasuring		K4
CO5		te approp			alyzing ele	ctronic wav	es	K5
CO6	-	amplifier ave Anal		Electronic	Measurin	g Instrumen	ts	K6
K1 – Ren	nember;	K2 – Un	derstand	l; K3 – Apj	oly; K4 –	Analyze; K	5 – Evalu	ate; K6 – Creat
		СО-РО	MAPPIN	NG (COUR	SE ARTI	CULATIO	N MATR	IX)
CO – PO	Mappin	g						
POs COs]	PO1	PO2	PO3	PO4	PO5	PO6	PO7

CO1	9	9	3	3	9	9	9
CO2	9	9	3	3	9	9	9
CO3	9	9	3	3	9	9	9
CO4	9	9	1	1	9	9	3
CO5	9	3	1	1	9	9	1
CO6	9	3	1	1	9	9	1
Total Contributio n of COs to Pos	54	42	12	12	54	54	32
Weighted Percentage of COs Contributio n to Pos	3.33	3.04	1.25	1.71	4.77	5.86	4.44
Level of corre	lation: 0 –	No correla	ation; 1 – L	l low correla	tion; 3 – N	ledium cor	relation; 9- High

correlation between COs and POs

SYLLABUS

UNIT- I: MEASUREMENT OF ERRORS

(9 Hours)

Accuracy, precision, resolution, sensitivity -absolute and relative errors-Types of errors -gross error, systematic error and random error.

STANDARDS OF MEASUREMENTS: Classification of standards, time and frequency standards, electrical standards.

UNIT- II: ELECTRICAL TRANSDUCER CLASSIFICATION Hours)

(9

Active and Passive transducers- selecting a good transducer – requirements of an electrical transducer – transducer types- resistive, inductive, capacitive and Piezoelectric transducer-Digital displacement

transducers – thermistors.

UNIT –III: AMPLIFIERS AND SIGNAL CONDITIONING

Instrumentation amplifiers-Isolation amplifiers-Chopper amplifiers-Voltage to frequency converters-Frequency multipliers-logarithmic amplifiers, S/H Circuits Active filters-Low pass, High pass, Band pass and Band stop filters.

UNIT - IV: ELECTRONIC MEASURING INSTRUMENT

Q-meter-Vector impedance meter Digital frequency meter -Digital voltmeter -Phase meter-RF power and voltage measurement -Power factor meter -Vector voltmeter. Display and Recording: X-Y Recorders-Magnetic Tape recorders-Storage Oscilloscope- cathode ray oscilloscope.

UNIT - V: ANALYSIS

Wave Analyzers-Audio frequency Wave analyzer-Harmonic distortion analyzers-Resonant harmonic distortion analyzer-Heterodyne harmonic distortion analyzer-Fundamental suppression harmonic distortion analyzer-Spectrum analyzer.

Text Book :

1. Electrical & Electronics Measurement & Instrumentation, A.K. Sawhney, DhanpatRai and sons. (All Units)

2. Modern Electronic Instrumentation, H. S. Kalsi, 2010, 3rd Edition - Tata McGraw Hill. **Reference Books**

1. Modern Electronic Instrumentation and Measurement Techniques, A.O. Hefnick and W.D. Cooper., Prentice Hall India Publications.

2. Introduction to Instrumentation and Control, A.K. Ghosh-Prentice Hall India Publications Web Reference:

- 1. https://www.academia.edu/8140873/A_K_Sawhney_A_course_in_Electrical_and_Electron ic Measurements and Instrumentation
- 2. https://pdfcoffee.com/h-s-kalsi-electronic-instrumentation-3e-pdf-free.html
- 3. http://fmcet.in/ECE/EC2351 uw.pdf

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
Part – IV	Ability Enhance	21AEP01	CYBER SECURITY	24	2

(10 Hours)

(10 Hours)

(10 Hours)

	ment								
Contact h	ours per w	veek: 2							
Year		Semester	Intern Mark		External Marks		Total Marks		
First		II	-			100			
	The aim i activities.	s to provide the	e students, th	ne basics o	f cyber secu	urity and the	he security threats in		
CO State	ment: On t	he successful c	ompletion of	f the cours	e, students	will be ab	le to		
GO			Knowledge						
COs	CO Statement Level								
CO1	Recall the basic concepts of information security and its types H								
CO2	Gain knowledge on cyber space issues and cyber security K2 measures K2								
CO3	Identify v	arious risks and	d threats in c	cyber space	e		K3		
CO4	Apply sec social me	curity measures dia	to prevent of	ourselves f	rom threats	in	K4		
CO5	Compare	various social	media, secur	ity issues	and measur	es	K5		
CO6		secured cyber their social and				ch	K6		
K1 – Ren	nember; K2	2 – Understan	d; K3 – Apj	oly; K4 – .	Analyze; K	15 – Evalu	ate; K6 – Create		
	CO)-PO MAPPI	NG (COUR	SE ARTI	CULATIO	N MATR	IX)		
CO – PO	Mapping								
POs COs	РО	1 PO2	PO3	PO4	PO5	PO6	PO7		
CO1	9	9	9	9	9	9	9		
CO2	9	9	9	9	9	9	9		

CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	3	9	9
CO5	9	9	3	3	3	9	3
CO6	9	9	3	3	3	3	3
Total Contributio n of COs to POs	54	54	42	42	36	48	42
Weighted Percentage of COs Contributio n to POs	4.47	5.04	5.0	5.8	5.4	8.1	9.3
I aval of aama	lation: A	No corrole	tion 1 I	ow corrole	tion 3 N	lodium oor	relation. 0. High

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

UNIT - I: INFORMATION SECURITY

History of Information Security - Need for Security-**Types of Security:** Physical Security –Network Security –Personal Security –Operation Security –Communication Security - Information Security Threats.

UNIT -II: INTRODUCTION TO CYBER SECURITY

Cyber Security: Objectives- Roles- Differences between Information Security and Cyber Security. **Cyber Security Principles:** Confidentiality- Integrity – Availability

UNIT -III: RISKS & VULNERABILITIES

Risk Meaning: Risk Management –Problems of Measuring Risk -Risk Levels-Risk Analyzes-Risk Assessment –Response to Risk Terminology- **Threats:** Components of Threats-Types of Threats-**Vulnerabilities:** Computing System Vulnerabilities –Hardware Vulnerabilities-Software Vulnerabilities-Data Vulnerabilities-Human Vulnerabilities.

UNIT - IV: SOCIAL MEDIA

Introduction to social media: What, Why –Pros and cons- Security issues in social media: Mail-Facebook-Whatsapp-Twitter-Preventive and control measures.

(5 Hours)

(5 Hours)

(5 Hours)

(5 Hours)

UNIT -V: CASE STUDY

(4 Hours)

Impact of social media: Education -Business- Banking-Mobile –Human Life- Present generation-Indian scenario.

Web References:

- 1. https://m.youtube.com/watch?v=o6pgd8gLFHg
- 2. https://m.youtube.com/watch?v=3rl4ZjZpcHU
- 3. https://blog.barkly.com/10-fundamental-cybersecurity-lessons-for-beginners
- 4. https://5social media security risk and how to avoid them.html
- 5. https://10 cyber security twitter profiles to watch.html
- 6. https://cyber security in banking 4 trends to watch in 2017.html
- 7. https://gmail hacking security tips-indian cyber security solutions.html
- 8. https://why social media sites are the new cyber weapons of.html
- 9. EBook: A complete guide to Staying Ahead in the Cyber Security Game

Category	Course Type	Course Code	Course I	`itle	Contact Hours	Credit		
III	Core : XII	21PHP12	ATOMIC AND MOLECULAR SPECTROSCOPY		60	4		
Contact hours per week: 5								
Year	YearSemesterInternalExternalMarksMarksMarks							
Second	1	III	50 50 100					
	Preamble: The aim is to provide the students, the skills and capability for formulating and analyzing chemical compounds using Atomic and Molecular Spectroscopy							

CO Statement: After completion of the course, the learners will be able to								
Cos		(Knowledge Level				
CO1	outline the Ato	mic Specti	a and Stud	y the micro	wave spect	ra	K1	
CO2	explain the cor	cepts in A	ру	K2				
CO3	apply the conc	epts to und	erstand the	properties	of molecule	es	К3	
CO4	analyze the pro	-	ent	K4				
CO5	choose approp molecules		K5					
CO6	develop spectr the concepts	ng	K6					
K1 – Rem	nember;K2 – Ui	nderstand;	K3 – App	ly; K4 – A	analyze; K	5 – Evaluat	e ; K6- Create	
	СО-РС) MAPPIN	IG (COUR	SE ARTIC	CULATIO	N MATRIX	ζ)	
CO – PO	Mapping							
POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
C01	9	9	9	9	9	9	9	
CO2	9	9	9	9	3	3	3	
CO3	9	9	3	3	3	1	3	
CO4	9	9	3	3	3	1	3	
CO5	9	3	3	1	3	1	1	

CO6	9	3	3	1	1	1	1
Total							
Contribution	54	42	30	26	22	16	20
of COs to	54	42	30	20	22	10	20
POs							
Weighted	6.37	5.58	5.16	5.32	5.05	4.23	7.66
Percentage							
of COs							
Contribution							
to POs							

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

UNIT –I: ATOMIC SPECTROSCOPY

Atoms in External Magnetic Fields -Normal Zeeman Effect-Anomalous Zeeman Effect-Magnetic Moment of Atom -Lande's g Formula- Paschen Back Effect- Stark Effect-Hyperfine Structure of Spectral Lines - Spectra of Hydrogen and Alkali Atoms

MICROWAVE SPECTROSCOPY-Experimental Methods-Theory of Microwave Spectra of Linear, Symmetric Top Molecules -Hyperfine Structure

UNIT - II: IR SPECTROSCOPY

Practical Aspects-Theory of IR Rotation Vibration Spectra of Gaseous Diatomic Molecules-Applications-Basic Principles of FTIR Spectroscopy.

Raman Spectroscopy: Classical and Quantum Theory of Raman Effect- Rotation Vibration Raman Spectra of Diatomic and Polyatomic Molecules-Applications-Laser Raman Spectroscopy

UNIT –III: FLUORESCENCE & PHOSPHORESCENCE SPECTROSCOPY (12 Hours)

Electronic Excitation of Diatomic Species-Vibrational Analysis of Band Systems of Diatomic Molecules-Deslander's Table-Intensity Distribution-Franck Condon Principle- Rotational Structure of

(12 Hours)

(12 Hours)

Electronic Bands-Resonance and Normal Fluorescence - Intensities of Transitions-Phosphorescence-Population of Triplet State -Experimental Methods-Applications of Fluorescence and Phosphorescence

UNIT –IV: NMR SPECTROSCOPY

(12 Hours)

Quantum Mechanical and Classical Description - Bloch Equations - Relaxation Processes-Experimental Technique-Principle and Working of High Resolution NMR Spectrometer- Chemical Shift

UNIT - V: ESR SPECTROSCOPY

(12 Hours)

Basic Principles-Experiments-ESR Spectrometer-Reflection Cavity and Microwave Bridge-ESR Spectrum-Hyperfine Structure

Text books:

1. Molecular Structure and Spectroscopy- G.Aruldhas, 2011, PHI Learning Private Limited.

Reference Books:

1. Fundamentals of Molecular Spectroscopy - C. N. Banwell, 1994, Tata McGraw Hill Publishing Company Limited.

Web Reference:

- 1. <u>https://books.google.co.vi/books?id=z08q2SyROjoC&printsec=frontcover&source=gbs_ge</u> _<u>summary_r&cad=0</u>
- 2. <u>http://www3.tellabs.com/cgi-</u>

bin/content/view.php?data=fundamentals of molecular spectroscopy banwell solutions book mediafile free file sharing&filetype=pdf&id=9e219833ce89228ea665a996607beea

- <u>8</u>
- 3. https://www.prsu.ac.in/backend/web/theme/tender/5860.pdf

Category	Course Type	Course Code	Course Title	Contact Hours	Credit		
Ш	Core : XIII	21PHP13	NUCLEAR & PARTICLE PHYSICS	60	4		
Contact hours per week: 5							

Yea	r	Semester	Internal Marks	Total Marks	
Secor	nd	III	50	50	100
levelop sl	kills to :	im is to provide the find the binding ene After completion of	rgy, spin and parit	y values for vario	
Cos		(CO Statement		Knowledge Level (RBT)
CO1		the properties of nu n reaction mechanis	K1		
CO2		in the concepts of n les, nuclear models,	K2		
CO3		fy the concepts of n ctions inside the nuc	K3		
CO4	force,	yse the classification properties of radioa ers, thermal reactors	K4		
CO5		ate the nuclear prop anisms and basic co	• •	ess, nuclear reaction	on K5
CO6	intera	rate the hypothesis b ctions and radioacti ar models	K6		

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	9	9	9	9	9	9	9
CO2	9	9	9	9	3	3	3
CO3	9	9	3	3	3	1	3
CO4	9	9	3	3	3	1	3
CO5	9	3	3	1	3	1	1
CO6	9	3	3	1	1	1	1
Total Contribution of COs to Pos	54	42	30	26	22	16	20
Weighted Percentage of COs Contribution to POs	6.37	5.58	5.16	5.32	5.05	4.23	7.66
Level of correla			tion; 1 – L	ow correla	tion; 3 – N	ledium corr	elation; 9- High
			SY	LLABUS			
UNIT I: NUCL	EAR PRO	PERTIES	5:			(12 Hou	rs)
Nuclear Struct	ure- Dist	ribution of	of Nuclea	r Charge	-Nuclear	Mass-Mass	Spectroscopy-Mas

Spectrometer-Theories of Nuclear Composition (proton-electron, proton-neutron)- Tensor Force-Static Force-Exchange Force- Nuclear energy levels - Nuclear angular momentum, parity, isospin - Nuclear magnetic dipole moment - Nuclear electric quadropole moment - Ground state of deuteron

UNIT II: RADIOACTIVE DECAYS - ALPHA DECAY (12 Hours)

Properties of α Particles-Gamow's Theory of α Decay-Geiger Nuttal Law- α Ray Energies-Fine Structure of α Rays- α Disintegration Energy-Long Range α Particles.

BETA DECAY: Properties of β Particles-General Features of β Ray Spectrum-Pauli"sHypothesis-Neutrino Hypothesis-Fermi's Theory of β Decay-Forms of Interactions and Selection Rules.

GAMMA DECAY: Absorption of γ Rays by Matter-Interaction of γ Rays with MatterMeasurement of γ Ray Energies-Internal Conversion.

UNIT III: NUCLEAR REACTIONS AND NUCLEAR MODEL (12 Hours)

Reciprocity theorem– Breit-Wigner formula – Resonance theory – Liquid drop model – Shell model --Evidences for shell model -- Magic numbers -- Harmonic oscillator -- Square-well potential -- Spinorbit interaction – Collective model of a nucleus.

UNIT IV: FISSION AND FUSION REACTOR

Characteristics of fission – Mass distribution of fragments – Radioactive decay processes – Fission cross-section - Energy in fission - Bohr-Wheeler's theory of nuclear fission - Fission reactors -Thermal reactors - Homogeneous reactors - Heterogeneous reactors - Basic fusion processes --Characteristics of fusion - Solar fusion - Controlled fusion reactors.

UNIT V: PARTICLE PHYSICS

Nucleons, leptons, mesons, baryons, hyperons, hadrons, strange particles - Classification of fundamental forces and elementary particles – Basic conservation laws – Additional conservation laws: Baryonic, leptonic, strangeness and isospin charges/quantum numbers – Gell-mann--Nishijima 23 formula - Invariance under charge conjugation (C), parity (P) and time reversal (T) – CPT theorem --Parity nonconservation in weak interactions – Eight-fold way and supermultiplets – SU(3) symmetry and quark model.

Text Books:

- 1. Nuclear Physics An Introduction, S. B. Patel, 2009, New Age, New Delhi.(Unit II,III)
- 2. Nuclear Physics D.C. Tayal, 2001, Himalaya Pub. House, New Delhi. (Unit I-V)

Web Reference:

1. https://www.rac.ac.in/assets/download/Syllabus.php?filename=Njc=

(12Hours)

(12 Hours)

- 2. http://idhayacollegekum.org/syllabus/physics/PG/sem4/NUCLEAR%20AND%20PARTIC LE%20PHYSICS.pdf
- 3. <u>http://www3.tellabs.com/cgi-bin/content/view.php?data=nuclear_physics_tayal&filetype=pdf&id=986f50b41754af3cf00</u> <u>45be6ac81807a</u>

Category	Course Type	Course Code	Course T	ïtle	Contact Hours	t Credit
III	Core : XIV	21PHP14	ELECTROMA FIELD THEOF	60		4
Contact ho	ours per wee	k: 5				
Year	S	emester	Internal Marks	Externa Marks		Total Marks
First		III	50	50		100
moving cha	arges and cha	rged systems	students, the theo and hence the pro- the course, the lea	pagation of	electrom	agnetic fields.
Cos		Knowledge Level (RBT)				
CO1	D1 recap the basics of electrostatics, magnetostatics and Maxwell's K1 equation					
CO2	U	e principles b lectromagnet	behind electrostation technologies the second	es in macros	K2	

CO3	apply different formulae in the field of electrostatics, magneto	K3
	statics and relativistic electrodynamics	
CO4	infer innovative ideas in the field of electromagnetic theory	K4
CO5	examine the effectiveness of different laws in electromagnetic	K5
	problems with the help of electrodynamic potentials	
CO6	Originate new theories and innovations based on	K6
	electromagnetic field theory	
K1 _ Rer	nember: K2 – Understand: K3 – Annly: K4 – Analyze: K5 – Fy	aluate: K6 _ Create

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	3	3	3
CO3	9	9	3	3	3	1	3
CO4	9	9	3	3	3	1	3
CO5	9	3	3	1	3	1	1
CO6	9	3	3	1	1	1	1
Total Contribution of COs to POs	54	42	30	26	22	16	20
Weighted	6.37	5.58	5.16	5.32	5.05	4.23	7.66

Percentage								
of COs								
Contribution								
to POs								
Level of correl	lation: 0 – N	lo correla	tion; 1 – L	low correla	tion; 3 – N	ledium cor	relation; 9- High	
correlation be	tween COs :	and PO						
			SY	YLLABUS				
UNIT I: ELEC	CTROSTAT	ICS				(12 Hour	·s)	
Coulomb's lay	v-Gauss lav	v-differen	tial and ii	ntegral rep	resentation-	Electric fi	eld-Electric poten	tial-
Method of images-Multipole expansions.								
UNIT II: ELE	CTROSTA'	TICS IN	MACROS	COPIC M	EDIA	(12]	Hours)	
Potential and	Field due to	an Elec	tric Dipole	-Dielectric	Polarizatio	on-External	Field of a Dieled	ctric
Medium-Gauss	' Theorem i	n a Diele	ctric-Electi	ric Displace	ement Vect	or D-Linea	r Dielectrics-Relat	ions
connecting Ele	ctric Suscent	ibility v.	Polarizatio	n P Displa	cement D	and Dielect	ric Constant-Bound	larv

Medium-Gauss' Theorem in a Dielectric-Electric Displacement Vector D-Linear Dielectrics-Relations connecting Electric Susceptibility χ_e , Polarization P, Displacement D and Dielectric Constant-Boundary Conditions of Field Vectors-Molecular Field-Clausius Mosotti Relation for Non-Polar Molecules-Electrostatic Energy and Energy Density.

UNIT III : MAGNETOSTATICS

Biot-Savart Law - Statement-Lorentz Force Law - Definition of B-Divergence and Curl of B Magnetic Scalar Potential (derivation of expression only)-Equivalence of Small Current Loop and Magnetic Dipole-Magnetic Vector Potential (derivation of expression only).

UNIT IV: ELECTROMAGNETICS

Equation of Continuity-Displacement Current-Derivation of Maxwel's Equations - Physical Significance - Poynting Vector - Momentum in EM Field - Electro Magnetic Potentials-Maxwell's Equations in terms of EM Potentials - Lorentz Gauge-Coulomb Gauge - Boundary Conditions at Interfaces.

UNIT V: RELATIVISTIC ELECTRODYNAMICS

Four Vectors-Transformation Relation for Charge and Current Densities for Electromagnetic Potentials-Covariance of Field Equations in terms of Four Vectors-Covariant Form of Electric and Magnetic Field Equations-Covariance of Electromagnetic Field Tensor-Covariant Form of Lorentz Force Law.

(12 Hours)

(12 Hours)

(12 Hours)

58

Text books:

- Electromagnetic Theory, Chopra & Agarwal-, 2016, K. Nath&Co,Educational Publishers,6th Edition. [ISBN: 978-81-924088-9-7] (Unit I-V)
- Electromagnetic Theory & Electrodynamics SathyaPrakash, 2004, KedarNath Ram Nath & co, Publishers New Edition.(Unit II, III, V)

Web Reference:

- 1. https://jemajodelevo.weebly.com/uploads/1/3/4/3/134394711/9f676172e37.pdf
- 2. https://indico.cern.ch/event/817381/contributions/3412315/attachments/1835901/3178259/L ectures.pdf
- 3. <u>https://rcub.ac.in/econtent/ug/bsc/4sem/BSc%20Sem%20IV%20Physics%20Electromagnetic %20Theory.pdf</u>

Category		urse ype	Course Code	Course Title		Conta Hour		Credit		
III	Core : 21PHP15 XV		INSTITUTIONAL TRAINING		-		1			
Contact h	ours p	er wee	k: -							
Year		Se	emester	Internal Marks	Externa Marks			Total Marks		
First			III	100	-			100		
Institutiona	al train	ing – c	reating a opp	deeper knowledg ortunity for the stu the course, the lea	udents	e able to)			
Cos	CO Statement							Knowledge Level (RBT)		
CO1		•	problems ticle ship Tra	& solutions rela aining.	ted to Ins	titutiona	ıl	K1		
				59			1			

CO2	Explain the principles involved in concerned Mini projects & Summarize the processes in various Industries.	K2
CO3	Solve the problems in concerned project works &also Produce excellent project report for both Institutional Training & Mini projects.	К3
CO4	Examine different types of problems,principles,Experimental techniques& applications of concerned project works.	K4
CO5	Design new machines, principles & applications for future generations& evaluate different issues related to Science & Technology.	K5
CO6	Invent new technology and use it in variour application	K6

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and PO

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	9	9	9
CO5	9	9	9	9	3	3	3
CO6	9	3	3	3	3	3	3

Total Contribution of COs to POs	54	48	48	48	42	42	42
Weighted Percentage of COs Contribution to POs	4.47	4.48	5.7	6.6	6.3	7.09	9.31
Level of correl correlation be			tion; 1 – L	ow correla	tion; 3 – N	ledium cor	relation; 9- High

Category	Course Type	Course Code	Course TitleContact HoursENVIRONMENTAL PHYSICS45		Credit	
III	Core : XVI	Open Elective			45	2
Contact h	ours per w	eek: 3				
Year		Semester	Internal Marks	Externa Marks		Total Marks
First		III	50	50		100
Pollution a	nd Control	Techniques.	the course, the lea			nding the Environmental
Cos			Knowledge Level (RBT)			
CO1	recall the b Pollution (K1				
CO2	outline the Technique	basic Principl	es involved in Pol	K2		

	energy resources	
CO3	apply Pollution Control Techniques to reduce pollution	К3
CO4	Analyse the different types of Pollution	K4
CO5	evaluate control measures for different types of pollution	K5
CO6	create new techniques to control Pollution	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	3	3	3
CO3	9	9	3	3	3	1	3
CO4	9	9	3	3	3	1	3
CO5	9	3	3	1	3	1	1
CO6	9	3	3	1	1	1	1
Total Contributio n of COs to POs	54	42	30	26	22	16	20
Weighted Percentage of COs Contributio	6.3	5.5	5.1	5.3	5.0	4.2	7.6

n to POs Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs **SYLLABUS** UNIT I (9 hours) Introduction - Environmental pollution - Sources of pollution - types of pollutants - Carbon Monoxide, Nitrogen Oxides, Sulphurdioxide - Particulates - Toxic Chemicals in the Environment - Effects of pollution - Preventive Measures of pollution. UNIT II (9 hours) Types of pollution – Air Pollution, Causes and its effects – Water pollution, Causes and its Effects -Soil Pollution, Causes and its Effects, Thermal pollution, Causes and its effects, Noise pollution - Causes and its Effects. (9 hours) (9 hours) (9 hours) Natural Energy Sources - Renewable Energy Sources - Solar Energy, Natural gases, Wind Energy and Tidal Energy – Non Renewable Energy Sources – Coal, Minerals and Petroleum products. **Text Books :** 1. Environmental Chemistry (7thEdition by A.K. DE) New Age International Publishers. 2. Environmental Studies Published by Bharathiar University. Web Reference: 1. http://pdf.wri.org/environmentalpollution_bw.pdf

- 2. <u>https://www.researchgate.net/publication/323944189_Environmental_Pollution_Causes_and_Cons</u> equences A Study
- 3. https://www.slideshare.net/VivekJain68/waste-management-70027829

UNIT III

Pollution Control Techniques - Solid Waste Management - Solid Waste Disposal - Solid Waste Ocean Dumping - Solid Waste Management by Bio Technology - Organic Waste Management by composting process.

UNIT IV

Waste Water Treatment – Water quality Parameters – Sludge Treatment – Reverse Osmosis – Water Reuse and Recycling – Domestic Water Treatment- Disinfection methods- UV Treatment and Ozonolysis.

UNIT V

- 4. http://www.tezu.ernet.in/denvsc/IDC/Waste%20Management.ppt
- 5. <u>https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=522265&Lab=NRMRL</u>
- 6. https://www.slideshare.net/pallabipriyadarsini25/solid-waste-management-ppt

Category	Course Type	Course Code	Course Title		Contact Hours	Credit	
	Core		BIOME	DICAL			
III	XVII	21PHP16A	INSTRUMENTATION		60	3	
	Electi ve III						
Contact h	ours per we	æk: 4					
Year	S	SemesterInternal MarksExternal Marks				tal Marks	
First		III	50	50		100	
behind the	instruments	•		rners will be abl		uments and Physics	
Cos		CO	O Statement			Knowledge Level (RBT)	
CO1		sonic resonance, vous system,Tra	-	sity, brain ,the ppler Ultrasound	1.	K1	
CO2	CO2 discuss electroencephalogram, ENT and ophthalmic instruments, Magnetic Resonance and Imaging					K2	
CO3	O3 apply the components of a typical laser system in ophthalmology.					K3	
CO4	•	e Recording of E technology, mag		K4			

	magnetic relaxation and MRI parameters.	
CO5	evaluate the techniques behind ultrasonography, ultrasound scanning, retinoscopy and Keratometer.	K5
CO6	modifythe characteristics of the normal ECG and transducer design.	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
Cos							
CO1	9	9	3	3	9	9	9
CO2	9	9	9	1	9	9	9
CO3	9	9	3	1	9	9	9
CO4	9	9	1	1	9	9	9
CO5	3	3	1	1	3	3	3
CO6	3	3	1	1	3	3	3
Total Contributio n of COs to Pos	42	42	18	08	42	42	42
Weighted Percentage of COs Contributio							
n to POs	3.33	3.04	6.08	4.61	3.18	2.60	3.33

correlation between COs and Pos

SYLLABUS

UNIT I: ELECTROPHYSIOLOGICAL MEASUREMENTS (12 Hours)

Cell potential genesis – Nernst relation – cell in resting state – action potential from a cell – the resultant externally recorded action potential.

Electrocardiography(ECG): Electrocardiographic planes – Einthoven triangle – bi polar and uni-polar limb lead frontal plane ECG measurements – ECG leads – precordial leads – relationship between various leads – recording of ECG waves and measurements (block diagram)

UNIT II: ELECTROENCEPHALOGRAM

The brain and the central nervous system – the brain and its parts – cell potential and action – the characteristics of the normal ECG – the input electrodes – electrode construction and connections – EEG recording instruments (explanation with block diagram) – EEG wave analysis – a typical EEG machine specifications and requirements.

UNIT III: ENT AND OPHTHALMIC INSTRUMENTS (12 Hours)

Audiometry – Bekesy audiometer system – instruments used in opthamology - opthalmoscope – retinoscopy – Keratometer – intra ocular pressure – ultra sound in ophthalmology – components of a typical laser system in ophthalmology.

UNIT IV

Ultrasonography – advantages – B scan – ultrasound scanning – ultrasonic system – probes for ultrasound – Doppler ultrasound (basic aspects) – transducer design – demodulation methods.

UNIT V: MAGNETIC RESONANCE AND IMAGING (MRI) (12 Hours)

Magnetic intensity – magnetic resonance phenomena – the magnets – magnetic relaxation and MRI parameters – pulse sequences.

Text Books:

1. A Text book of Medical Instruments, S.Anandhi, 2005, New Age International (P) Ltd., Publishers, 1st Edition.(Units I-V)

nthomology

(12 Hours)

(12 Hours)

Reference books:

- 1. Encyclopedia of medical devices and instrumentation, John G. Webster et.al, Wiley-Interscience, Second Edition.
- 2. **Medical Physics and Bio medical Engineering,** B. H. Brown et, al. Institute of Physics Publishing Bristol and Philadelphia.
- 3. **Design and Development of Medical Electronic Instrumentation**, David Prutchi, Michael Norris, Wiley Interscience.
- 4. **Bio medical instrumentation**, M. Arumugam, 2002, Anuradha Publications. [ISBN: 818772112X]

Web Reference:

- 1. <u>https://pdfroom.com/books/a-textbook-of-medical-instruments-s-ananthi-new-age-2005-ww/7jgkRPbmdMV</u>
- 2. <u>https://iopscience.iop.org/article/10.1088/0967-3334/21/4/701</u>
- 3. <u>https://biblioseb.files.wordpress.com/2018/03/wiley-encyclopedia-of-medical-devices-and-instrumentationvol-3.pdf</u>
- 4. <u>https://www.researchgate.net/publication/3246222_Design_and_Development_of_Medical_Electr_onic_Instrumentation_-_Book_review_</u>

Category	Course Type	Course Code	Course Title		Contact Hours	Credit			
III	Core : XVII Elective III	21PHP16 B	THIN FILM PI AND CRYS GROWT	TAL	60	3			
Contact hours per week: 4									
Year	S	emester	Internal Marks	Externa Marks		Total Marks			
First		III	50	50		100			
Preamble:	The aim is t	to provide the	students to gain k	nowledge a	nd understar	nding the Environmental			

Pollution and Control Techniques.

CO Statement: After completion of the course, the learners will be able to

Cos			Knowledge Level (RBT)				
	recall the natu of crystals	ess	K1				
	explain the co of film growt crystals	-	K2				
	apply the requ growth techni		К3				
	analyze the th of a crystal,	ure	K4				
	evaluate the or deposition par Techniques of	1	K5				
	Prepare a thin prepare: $K^2 - I$	5 – Evaluate	K6 ; K6 – Create				
CO – PO N	CO-P					N MATRIX	
POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	3	3

CO4	9	9	9	3	3	1	1
CO5	9	3	3	3	3	1	1
CO6	9	3	3	3	3	1	1
Total Contributio n of COs to POs	54	42	42	36	36	24	24
Weighted Percentage of COs Contributio n to POs	3.33	3.04	6.08	4.61	3.18	2.60	3.33

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

UNIT I: PREPARATION OF THIN FILM:

Nature of Thin Film-Deposition Technology-Distribution of Deposit-Resistance Heating- Thermal **Evaporation-Flash Evaporation**

SYLLABUS

UNIT II: DEPOSITION TECHNIQUES

Electron Beam Method-Cathodic Sputtering-Glow Discharge Sputtering-Low Pressure Sputtering-Reactive Sputtering-RF Sputtering-Chemical Vapour Deposition-Chemical Deposition

UNIT III: THIN FILM GROWTH PROCESS

Epitaxy-Thin Film Structure-Substrate Effect-Epitaxial Deposit - Film growth-five stages- Nucleation theories-Incorporation of defects and impurities in films Deposition parameters and grain size-structure of thin films.

FILM THICKNESS: Mass Methods-Optical Method-Photometry-ElliPOmetry-Interferometry-Other Methods- Substrate Cleaning.

UNIT IV: CRYSTALLIZATION PRINCIPLES AND GROWTH TECHNIQUES (12 Hours)

Solution growth-Low and high temperatures solution growth-Slow cooling and solvent evaporation

(12 Hours)

(12 Hours)

(12 Hours)

methods-Constant temperature bath as a crystallizer. Principle of gel technique-Various types of gel -Structure and importance of gel-Methods of gel growth and advantages-Melt technique- Czochralski growth- Vapor-phase growth-Physical vapor deposition-Chemical vapor deposition.

UNIT V: CHARACTERIZATION TECHNIQUE

(12 Hours)

X-ray Diffraction (XRD)-power and single crystal-Fourier transform infrared analysis-FT-Raman analysis-Elemental dispersive x-ray analysis (EDA–X)-scanning electron microscopy (SEM)-UV-VIS Spectrometer-Photo luminance (PL)

Text Books:

- 1. Thin Film Fundamentals, A. Goswami, 2008, New Age, New Delhi. (Units I III)
- 2. Elementary Crystal Growth, K. Sangawal, 1994, Shan Publisher, UK. (Unit IV)
- 3. **Crystal Growth and Processes**, P. Santhana Ragavan, P.Ramasamy, 2000, KRU Publications, Kumbakonam. (Unit IV, V)
- 4. Crystal Growth Process, J. C. Brice, 1996, John Wiley Publications, New York.

Reference books:

- 1. Hand book of Thin Films Technology, L.I. Maissel and R. Clang, 1970, McGraw Hill.
- 2. Thin Films Process, J. L. Vossen and W. Kern, 1978, Academic Press.
- 3. The Materials Science of Thin Films, M. Ohring, 1992, Academic Press.
- 4. Instrumental Methods of Analysis, M. William and D. Steve, 1986, CBS publishers, New Delhi.
- 5. **Instrumental Methods of Analysis**, H.H. Williard, L.L. Merritt, M.J. Dean, and F.A. Settle, Sixth Edition, 1986, CBS Publishers and distributors, New Delhi.

Web Reference:

- 1. <u>https://books.google.co.in/books/about/Thin_Film_Fundamentals.html?id=K0e-8Nh9zSYC</u>
- 2. <u>http://www.issp.ac.ru/ebooks/books/open/Advanced_Topics_on_Crystal_Growth.pdf</u>
- 3. https://www.acadpubl.eu/hub/2018-119-12/articles/2/489.pdf
- 4. <u>https://www.sathyabama.ac.in/sites/default/files/course-material/2020-10/SCY2.pdf</u>
- 5. <u>https://arshadnotes.files.wordpress.com/2018/02/the_materials_science_of_thin_films.pdf</u>

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
V	Proficie ncy Enhance ment	21PEP01	LASER AND ITS APPLICATIONS (SELF –STUDY)	-	2

Contact h	ours j	per week:	-							
Year	Year Semester Internal External Marks Marks					Total Marks				
First	t III - 100							100		
Preamble: The Aim is to provide the students knowledge about Lasers, types of lasers available and its applications, in medical and industrial lines and train them to fabricate new models of lasers.										
CO State	ment:	After con	npletion of	the course,	the learne	rs will be abl	e to			
Cos			(CO Statem	ent			Knowledge		
005								Level (RBT)		
CO1	reca	recall the basic terms involved in the lasers K1								
CO2		Explain the fundamental properties and conditions of different K2 lasers								
CO3	appl	apply the laser applications in material processing K3								
CO4		Analyze the different types of surface treatments, laserK4deposition of thin film, integrated circuit fabricationK4								
CO5	Eval	luate the n	eeded meth	od for the p	preparatio	n of thin film		K5		
CO6	Crea	Create a new technique for sample fabrications K6								
K1 – Ren	nembe	er; K2 – U	Inderstand	; K3 – App	oly; K4 –	Analyze; K5	– Evalua	te; K6 – Create		
CO-PO MAPPING (COURSE ARTICULATION MATRIX)										
CO – PO	Mapp	ping								
POs Cos		PO1	PO2	PO3	PO4	PO5	PO6	PO7		
C01		9	9	9	9	9	3	3		

CO2	9	9	9	9	3	3	3
0.01	-	-		-	C		C C
CO3	9	9	9	3	3	3	3
CO4	9	3	3	3	1	3	3
CO5	3	3	3	1	1	3	3
CO6	3	3	1	1	0	1	1
Total Contributio n of COs to POs	42	36	34	26	17	16	16
Weighted Percentage of COs Contributio n to POs	3.47	3.36	4.0	3.6	2.5	2.7	3.5

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

SYLLABUS

UNIT I: FUNDAMENTALS OF LASERS

Electromagnetic radiation – energy levels – Interaction of radiation and matter – fluorescence, absorption, stimulated emission.

LASER MATERIALS: population inversion – optical pumping- excitation by electron collisions – resonant transfer of energy – resonant cavity.

UNIT II: PROPERTIES OF LASER LIGHT

Line width - collimation - spatial profiles of laser beams - temporal behavior of Laser output -Q switched operation - mode locked operation - cavity dumping - coherence - radiance - focusing properties of Laser radiation - power.

UNIT III: GAS LASER

He-Ne Laser - ionized gas laser - Molecular Laser (CO2) - Solid state lasers: Neodymium YAG

Lasers- glass Lasers- Ruby Lasers.

UNIT IV: SEMI CONDUCTOR LASER

semiconductor laser properties – Diode structures – diode doped solid state laser – Organic dye lasers – chemical lasers – X ray lasers – Tunable lasers

UNIT V: APPLICATIONS

Interferometric distance measurement – velocity measurements – measurement of wire diameter – measurement of surface finish – particle diameter measurement – laser applications in material processing – laser welding – surface treatment – drilling, cutting and marking – laser deposition of thin film – integrated circuit fabrication.

Text Books:

- 1. Laser Systems and Application, V.K.Jain, 2013, Narosa Publisher. (All Units)
- 2. Laser and Non-Linear Optics, B.B.Laud, 2011, New age Int. publisher, 3rd Edition.

Reference books:

- 1. Semiconductor LasersI-Fundamentals, Edited by Eli Kapon, 1999, Academic press.
- 2. Solid state Lasers: A graduate text, Walter Koechner Michael Bass, 1937, Springer.
- 3. Laser & Optical Fibre Communications, P.sarah, 2008, I.K.Int publisher.
- 4. Laser Physics, S. Mohan, V. Arjunan, M. Selvarani, M. Kanjanamala, 2012, MJP Publishers.

Web Reference:

- 1. <u>https://spie.org/Documents/Courses/OP-</u> <u>TEC/Course_2_Laser_Systems_and_Applications_2nd_Edition_2016.pdf</u>
- 2. https://www.academia.edu/42707790/Lasers_and_Non_Linear_Optics
- 3. http://www.ime.cas.cn/icac/learning/learning_3/201907/P020190717575056933547.pdf
- 4. <u>https://mrcet.com/downloads/digital_notes/ECE/III%20Year/FIBER%20OPTICAL%20COMM_UNICATIONS.pdf</u>
- 5. <u>https://ehs.msu.edu/_assets/docs/laser/laser-fundamentals-pt1-springer-2005.pdf</u>

Category	Course Type	Course Code	Course Title	Contact Hours	Credit
III	Core : XVIII	21PHP17	CONDENSED	90	4

SEMESTER IV

			MATTER PHY	ISICS		
Contact l	hours p	er week: 6				
Year	r	Semester	Internal Marks	Externa Marks	-	Total Marks
First	;	III	50	50		100
rystal de	fects an	d to advance skills	for analyzing Heat	t capacity of	the electro	he Crystal structure a on gas and Magnetism
CO State	ement: A	After completion of	t the course, the lea	arners will be	e able to	Vnomladaa
Cos			CO Statement			Knowledge Level (RBT)
CO1		mber the Crystal, la t, Semiconductors, rials.	-		s, Hall	K1
CO2		ribe the concept of rent types of materi	-	s defects and	l	K2
CO3		late the reciprocal uctivity of metals b				K3
CO4	-	ze various various rconductor and mag		nductor, Die	lectric,	K4
CO5		fy the defects and out to by various method		tals and iden	ntify the	K5
CO6		e new types of semi etic materials	iconductor, Superc	onductor and	1	K6
K1 – Ren	nember	r; K2 – Understan	d; K3 – Apply; Ka	4 – Analyze;	; K5 – Eva	aluate; K6 – Create
		CO-PO MAPPI	NG (COURSE AR	RTICULAT	ION MAT	TRIX)

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	3	3	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	3	3	3	3
CO5	9	9	3	3	1	1	1
CO6	9	3	3	3	9	9	3
Total Contributio n of COs to Pos	54	48	42	36	22	22	16
Weighted Percentage of COs Contributio n to POs	6.37	6.38	7.22	7.37	5.05	5.82	6.13

Level of correlation: 0 – No correlation;1 – Low correlation;3 – Medium correlation;9- High correlation between COs and Pos

SYLLABUS

UNIT I: RECIPROCAL LATTICES

Vector development of reciprocal lattice – Properties of the reciprocal lattice – Reciprocal lattice to bcc lattice and fcc lattice.

UNIT II: CRYSTAL DEFECTS

Classification of defects - Points defect - The Schottky defect - The Frenkel defect -colour centers - F center - other colour centers - Production of colour centers by X rays and practice irradiation – Defect and energy state.Dislocations - Slip and plastic deformation - Shear strength of single crystals - Edge

(18 Hours)

(18 Hours)

dislocation - Screw dislocation - Stress field around an edge dislocation

UNIT III :LATTICE VIBRATIONS, SEMICONDUCTORS & FREE ELECTRON THEORY (18 Hours)

Vibrations of One Dimensional Diatomic Linear Lattice -Acoustic and Optical Branches Phonon State-Energy levels and density of orbitals – Motion in magnetic fields – Hall effect – Thermal conductivity of metals – Nearly free electron model –Electron in a periodic potential – Semiconductors – Band gap – Effective mass – Intrinsic carrier concentration

UNIT IV: DIELECTRICS, FERROELECTRICS AND SUPERCONDUCTIVITY (18 Hours)

Macroscopic electric field – Local electrical field at an atom –Polarizability – Clausius- Mossotti equation – Ferroelectric crystals – Polarization Catastrophe – Ferroelectric domains.Occurrence of Superconductivity – Meissner effect – Thermodynamics of Superconducting transition – London equation – Coherence length – BCS theory – Flux Quantization – Type-I and Type-II Superconductors –Josephson tunneling effect- DC and AC Josephson effect – SQUID.

UNIT V: MAGNETISM

(18 Hours)

Quantum theory of Paramagnetism – Paramagnetic susceptibility of conduction electrons – Hund's rules- Kondo effect. Ferroelectric order – Curie point and the exchange integral – Temperature dependence of saturation magnetization – Magnons – Thermal excitation – Ferromagnetic order – Antiferromagnetic order – Antiferromagnetic Magnons – Ferromagnetic domains – Origin of domains – Coercive force and hysteresis.

Text Books:

- 1. **Introduction to Solid State Physics,** Kittel. C. 2005, 8th Edition, Willey India (P) Ltd., New Delhi.(Units III, IV & V)
- 2. **Fundamentals of Solid State Physics,** Saxena. B.S., R. C. Gupta and P. N. Saxena, 2012, 16th edition, Pragati Prakashan, Meerut.(Units I & IV)
- 3. Solid State Physics, S. L. Guptha, V. Kumar, Ninth Edition, K. Nath & Co, Meerut.[ISBN:978-81-924088-7-3]

Reference books:

- 1. Solid State Physics, A.J. Dekkar, revised edition, 2000, Macmillan India Ltd., New Delhi.
- 2. **Principles of Solid State,** Keer. H.V. 1st edition, 2002, New age international, New Delhi.
- 3. **Solid State Physics,** Pillai S.O., 2005, 4th Edition, New Age International Publishers Ltd.

Web Reference:

- 1. <u>https://www.wiley.com/en-us/Introduction+to+Solid+State+Physics%2C+8th+Edition-p-9780471415268</u>
- 2. <u>https://www.researchgate.net/publication/307976662_Fundamentals_of_Solid_State_Ph_ysics</u>
- 3. <u>http://vnit.ac.in/chem/wp-content/uploads/2018/10/PG-Course_Book-2016.pdf</u>

Category	Course Type	Course Code	Course Title		Contact Hours	Credit
III	Core : XIX	21PHP18	THERMODYNAMICS AND STATISTICAL90MECHANICS		90	4
Contact h	ours per w	eek: 6	1		I	
Year	•	Semester	Internal Marks	Externa Marks		Total Marks
First		III	50	50		100
CO State	ment: After	completion of	on and statistics the course, the lea CO Statement		e able to	Knowledge Level (RBT)
CO1		aws and prince Mechanics	ples in Thermody	namics and		K1
CO2	explain the link between statistics and thermodynamics, classical and quantum statistics and its applications					K2
CO3	apply principles to explain Black body radiation, Gibbs paradoxK3and Phase transitionK3					K3
CO4	categorize different type of statistics based on application					K4

CO5	select appropriate statistics for the distribution of particles	K5
CO6	predict the proper statistics to explain various phenomena in Thermodynamics	К6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	0	0	0
CO2	9	9	9	9	3	0	0
CO3	9	9	9	9	3	3	9
CO4	9	1	9	1	1	3	9
CO5	1	1	9	1	0	3	3
CO6	1	1	9	1	0	3	0
Total Contributio n of COs to POs	38	30	45	30	7	12	21
Weighted Percentage of COs Contributio n to Pos	4.48	3.98	7.74	6.14	1.60	3.17	8.04
Level of correl correlation bet			tion;1 – Lo	w correlat	ion;3 – Me	dium corre	elation;9- High
			SYL	LABUS			

UNIT I: Thermodynamics and Radiation

Second law of thermodynamics- Entropy and Second law of thermodynamics- Entropy and Disorder- Thermodynamic Potential and Reciprocity relation- Thermodynamic Equilibria-Chemical Potential- Blackbody radiation- Planck's Radiation law.

UNIT II: BASIC CONCEPTS OF STATISTICAL PHYSICS (18 Hours)

Phase space- Concept of ensemble- Micro canonical ensemble-Canonical ensemble- Grand Canonical ensemble- Density distribution in phase space- Liouvilles theorem- Postulate of equal apriori probability- Statistical equilibrium- Thermal equilibrium- Mechanical equilibrium-Particle equilibrium-Connection between Statistical and thermodynamic quantities.

UNIT III: CLASSICAL DISTRIBUTION LAW

Microstates and Macro states-Classical Maxwell-Boltzmann distribution law- Evaluation of constants, α and β - Maxwell's law of Distribution of velocities- Principle of equi-partition of energy- Gibbs paradox- Partition function and its correlation with thermodynamics quantities.

UNIT IV: QUANTUM STATISTICS

Indistinguishability and quantum statistics- Statistical weight and apriori probability- Identical particle's and symmetry requirements- Bose Einstein's Statistics- Fermi Dirac Statistics- Results of three statistics- Thermodynamic interpretation of parameter's α and β - Blackbody radiation and Planck radiation- Specific heat of solids: Dulong and Petit's law- Einstein's Theory- Debye theory.

Unit V: APPLICATION OF QUANTUM STATISTICS (18 Hours)

Energy and pressure of ideal Bose Einstein gas- Bose Einstein condensation- Liquid helium-Energy and pressure of ideal Fermi Dirac gas- Free electron model and electronic emission-Onsager relations- Fluctuation in Energy, Pressure, Volume & Enthalpy- The Ising model-Bragg William Approximation- One dimensional Ising model .

Text Books:

1. Statistical mechanics, Gupta & Kumar, 2003, Pragati prakashan, Meerut. (All Units)

Reference books:

1. **Elements of Statistical Mechanics**, Miss Kamal Singh, S.P.Singh, 1999, S.Chand & Company Ltd

Web Reference:

1. <u>https://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/</u>

(18 Hours)

(18 Hours)

(18 Hours)

- 2. https://core.ac.uk/download/pdf/44144078.pdf
- 3. https://cds.cern.ch/record/988948/files/0521841984_TOC.pdf
- 4. <u>http://www0.unsl.edu.ar/~cornette/ME/An-Introduction-to-Statistical-Mechanics-and-Thermodynamics.pdf</u>

Category	Course Type	Course Code	Course Title Contact Hours		Credit	
III	Core : XX	21PHP19	ELECTRONIC COMMUNICATION 90 SYSTEMS		4	
Contact he	ours per w	eek: 6				
Year		Semester	Internal Marks	Externa Marks		Total Marks
First		III	50	50		100
microwave CO Staten Cos		-	the course, the lea	rners will b	e able to	Knowledge Level (RBT)
CO1	-	propagation an d Optical fibre	d properties of lig	ht, Antenna	s,	K1
CO2		e types of Ante Types of Modu	nna, the microway lation	e generators	s, Radar	K2
CO3	apply Light propagation in Sky ,Ground Wave Propagation and Ionosphere, Radar in Radar Systems, Signals in Modulation, Interpret the application of optical fibres					К3
CO4	analyze the Working of Directional High frequency Antennas, Klystron, Magnetron, Travelling Wave Tubes, MASER, and Optical Fibre Propagation					K4

CO5	evaluate the Grounded Antenna, Ungrounded $\lambda/2$ Antenna, and Mathematical representation of FM, Step and Graded Index Fibres, Fibre Losses and Dispersion	K5
CO6	predict the rule for reducing Noise and Signal Loss in Antenna transmission	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	3
CO3	9	9	9	9	9	3	3
CO4	9	9	9	3	3	3	3
CO5	9	9	3	1	1	1	3
CO6	9	9	3	1	1	1	1
Total Contributio n of COs to Pos	54	54	42	32	32	26	22
Weighted Percentage of COs Contributio n to POs	6.37	7.18	7.22	6.55	7.35	6.87	8.42

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and Pos

SYLLABUS

UNIT I: ANTENNAS & WAVE PROPAGATION

Terms and Definition -Effect of Ground on Antenna-Grounded $\lambda/4$ Antenna Ungrounded $\lambda/2$ Antenna Antenna Arrays-Broadside and End Side Arrays-Antenna Gain-Directional High Frequency Antennas-Sky Wave Propagation-Ionosphere-Ground Wave Propagation.

UNIT II: MICROWAVES

Microwave Generation-Multicavity Klystron -Reflex Klystron-Magnetron-Travelling Wave Tubes (TWT) -MASER.

UNIT III: RADAR SYSTEM

Elements of a Radar System-Radar Equation-Radar Performance Factors-Radar Transmitting Systems-Radar Antennas-Duplexers-Radar Receivers and Indicators-Pulsed Systems-Other Radar Systems

UNIT IV: COMMUNICATION ELECTRONICS

Analog and Digital Signals –Modulation –Types of Modulation-Amplitude modulation theory – Frequency spectrum of the AM wave –Representation of AM –Power relations in the AM wave – Generation of AM –Basic requirements-Description of frequency and phase modulation – Mathematical representation of FM –Frequency spectrum of the FM wave -Effects of noise on carrier.

UNIT V: OPTICAL FIBRES

Propagation of Light in an Optical Fibre-Acceptance Angle-Numerical Aperture-Step and Graded Index Fibres-Optical Fibre as a Cylindrical Wave Guide-Wave Guide Equations-Wave Equations in Step Index Fibres-Fibre Losses and Dispersion-Applications.

Text Books:

- 1. **Electronic Communication System**, George Kennedy & Davis, 1989, Tata McGraw Hill 4th edition.[ISBN:978-0-07-107782-8] (Units I IV)
- 1. Optical fiber and fiber optic communication systems, S. K. Sarkar, 2007, S. Chand Publication. (Unit V)

References books:

(18 Hours)

(18 Hours)

(18 Hours)

(18 Hours)

(18 Hours)

2. Electronic Communications, Sanjeeva Gupta, 2002, Khanna Publishers.

Web References:

- 1. <u>https://soaneemrana.org/onewebmedia/ELECTRONICS%20COMMUNICATION%20SYSTE</u> <u>M%20BY%20GEORGE%20KENNEDY.pdf</u>
- 2. <u>https://mrcet.com/downloads/digital_notes/ECE/III%20Year/FIBER%20OPTICAL%20COM</u> <u>MUNICATIONS.pdf</u>

Category	Course Type	Course Code	Course Title Contact Hours		Contact Hours	Credit
III	Core : XXI	21PHP20	ADVANCED P PRACTICAL-I		135	4
Contact he	ours per wo	eek: 5				
Year	\$	Semester	Internal Marks	Externa Marks		Total Marks
First		III & IV	50	50		100
Physics exp equipments CO Staten Cos	periments, l s used. nent: After	to provide the learn about han completion of	now about o	different Knowledge Level (RBT)		
CO1	remember	the formulae a	nd properties for c	lifferent exp	eriments	K1
CO2	be aware of principles and characteristics of various experiments					K2
CO3		seek different applying conditions and procedure in each K3 experiment				
CO4	-	e causes for eachifferent formul	K4			

CO5	assess and cor		K5				
CO6	develop new i	t	K6				
K1 – Reme	ember; K2 – U	Inderstand	; K3 – Apj	oly; K4 – A	nalyze; K5	5 – Evaluate;	K6 – Create
CO – PO N		O MAPPIN	NG (COUR	RSE ARTIO	CULATION	N MATRIX)	
			DO 4	DO 4			
PQ COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	3	3	9	9	1
CO4	9	9	3	3	3	3	1
CO5	9	9	3	3	3	3	1
CO6	3	3	0	3	0	3	0
Total Contributi n of COs t Pos		48	27	30	33	36	9
Weighted Percentag of COs Contributi n to POs	e	6.38	4.64	6.14	7.58	9.52	3.44
	rrelation: 0 – between COs		tion; 1 – L	ow correla	tion; 3 – M	ledium corre	lation; 9- High
			SY	LLABUS			

S.No	Course Content	Instructional Hours
1	e/m-Magnetron Method	
2	Compressibility of a Liquid-Ultrasonic Method	
3	Arc Spectra-Constant Deviation Spectrograph-Copper, Iron & Brass	
4	Michelson Interferometer- λ , $d\lambda$ and Thickness of Mica Sheet	
5	Susceptibility-Guoy and Quincke"s Method	
6	Hall Effect and its application	
7	e/m-Zeeman Effect	
8	B-H Curve-Solenoid	
9	B-H Curve-Anchor ring	
10	Double Slit-Wavelength Determination	
11	G.M Counter-Characteristics	135
12	Kelvin"s Double Bridge-Determination of Very	
13	LowResistance& Temperature Coefficient of Resistance He-Ne Laser determination	
14	Matlab Programming-Radioactive Decay	
15	Matlab Programming-Numerical Integration	
16	Matlab Programming-Double Integration	
17	Matlab Programming-Solution of Ordinary Differential Equations	
18	Matlab Programming-Computer Simulation of Equations of Motion for a System of Particles	
19	Matlab Programming-Computer Simulation of 1-D and 2-D Lattice Vibrations	

20	Matlab Programming-Computer Simulation of Kronig- Penney Model	
21	Matlab Programming-Numerical simulation of Wave- Functions of Simple Harmonic Oscillator	
22	Matlab Programming-Simulation of Wave Functions for a Particle in Critical Box	
23	Matlab Programming-Solution of Diffusion Equation	

Category	Course Type	Course Code	Course Title		Contact Hours	Credit		
III	Core : XXII	21PHP21			135	4		
Contact he	ours per wo	eek: 5						
Year	5	Semester	Internal Marks	Externa Marks		Total Marks		
First		III & IV	50	50		100		
CO Staten	nent: After	completion of	the course, the lea	rners will b	e able to	Knowledge		
Cos		(CO Statement		Level (RBT)			
CO1	recall the working principle of Operational Amplifier, IC 555 and microprocessor					K1		
CO2			the functioning of circuits constructed using amplifier and IC 555					
CO3	perform a	nalog to digit	cal conversion and digital to analog K3			К3		

	conversion using operational amplifier perform interfacing for waveform generator, stepper motor, 7 segment LED display Hex keyboard musical tone generator using microprocessor	
CO4	analyze the mathematical operations performed by circuits constructed using operational amplifier	K4
CO5	determine the frequency of astablemultivibrator and output voltage in simultaneous adder and subtractor execute programs using microprocessor	K5
CO6	construct the circuits to perform mathematical operations, measurement of temperature and light intensity using operational amplifier	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	3	3	9	9	1
CO4	9	9	3	3	3	3	1
CO5	9	9	3	3	3	3	1
CO6	3	3	0	3	0	3	0
Total Contributio n of COs to	48	48	27	30	33	36	9

POs							
Weighted	5.66	6.38	4.64	6.14	7.58	9.52	3.44
Percentage of COs Contributio n to POs							

Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs

SYLLABUS

ANY TEN(10) EXPERIMENTS ONLY

EXAMINATION AT THE END OF SECOND SEMESTER

S.No	Course Content	Instructional Hours
1	Op-Amp: Simultaneous Addition & Subtraction	
2	Op-Amp: V to I & I to V Converter	-
3	Op-Amp: Circuits Using Diodes-Half Wave, Full Wave, Peak Value, Clipper, Clamper	
4	Op-Amp: Log and Antilog Amplifier	_
5	Op-Amp Comparator-Zero Crossing Detector, Window Detector, Time Marker	
6	Op-Amp: Instrumentation Amplifier-Temperature Measurement	135
7	Op-Amp: Instrumentation Amplifier-Light Intensity- Inverse Square Law	
8	IC 555 Timer Application-Monostable, Linear & Astable	_
9	A/D Converters-Any One Method	-
10	D/A Converters-Binary Weighted Method	-
11	Microprocessor: LED Interfacing	-

12	Microprocessor: Stepper Motor Interfacing	
13	Microprocessor: Traffic Control Simulation	
14	Microprocessor: ADC Interface-Wave Form Generation	
15	Microprocessor: Hex Keyboard Interfacing	
16	Microprocessor: Musical Tone Generator Interface	
25	MATLAB Programming-Mean, Median & Standard Deviation	
26	MATLAB Programming-Curve Fitting & Interpolation	
27	MATLAB Programming-Matrix Summation, Subtraction and Multiplication	
28	MATLAB Programming-Matrix Inversion and Solution of Simultaneous Equations	
29	He-Ne Laser – Measurement of refractive index of liquids.	
30	He-Ne Laser – Power distribution measurement.	
31	He-Ne Laser – Thickness of Wire	

Category	Course Type	Course Code	Course Title				Course Title		Contact Hours	Credit
III	Core : XXIII	21PHP22	PROJECT WOR VIVA VOCE	K & 50		3				
Contact ho	Contact hours per week: 2									
Year	S	SemesterInternalExternalMarksMarksMarks		emester		-	Total Marks			
2022		III	50	50		100				

Preamble: The aim is to provide the student to acquire knowledge on synthesis, fabrication nd evaluation on basis of day to day life scenario and to understand the Importance of undergone project.

Cos	CO Statement	Knowledge
		Level (RBT)
CO1	remember the facts about concerned project and its availability in environment	K1
CO2	be aware of principles that are interconnected to their individual project like material science, thin films, solar cells	K2
CO3	seek different applying technique and create innovative ideas on basis of project studies	K3
CO4	explore the causes and reason behind applied techniques of the project	K4
CO5	evaluate the results made from the project and analyse the usage of project in daily life	K5
CO6	develop further more innovations in the existing project based on innovative ideas	K6

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO – PO Mapping

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	9	9	9	9	3	9
CO2	9	9	9	9	3	3	3

CO3	9	9	9	9	3	3	3	
005)	5	5	5	
CO4	9	9	3	9	3	3	1	
CO5	9	3	1	3	1	3	1	
CO6	3	3	1	3	1	1	1	
Total Contribution of COs to POs	48	42	32	42	20	16	18	
Weighted Percentage of COs Contribution to POs	3.97	3.92	3.8	5.8	3.0	2.70	3.99	
Level of correlation: 0 – No correlation; 1 – Low correlation; 3 – Medium correlation; 9- High correlation between COs and POs								

(i) Value-added Courses:

Course Code	Course Name	Category	L	Т	Р	Credit
	MATERIAL SCIENCE	Value added				
Preamble The aim of the objectives is	to provide basic knowledge and skil	l of Material S	Scien	ce.		

SYLLABUS

UNIT I

Material Science– Properties of Engineering Material– Selection of Materials for Engineering Applications.

UNIT II: MAGNETIC MATERIALS

Different types of Magnetic Materials –Diamagnetism and Paramagnetism – Ferromagnetism – Domain theory of ferromagnetism - Hard and Soft magnetic materials

UNIT III : MODERN ENGINEERING MATERIALS

Polymer – Ceramics – Super Strong Materials – Cermets– High temperature materials– Thermoelectric Materials– Electrets– Nuclear Engineering materials

UNIT IV : NEW MATERIALS

Metallic glasses – Fiber reinforced plastics – Metal matrix composites – Optical Materials– Materials for optical sources and detectors– Fiber Optic materials and their applications

UNIT V

Display Materials – Acoustic Materials and their applications– SAW materials– Biomaterials

Text Books

1. Materials science- M Arumugam, Anuradha agencies

References Books

1. Materials Science and Engineering - V. Raghavan, Prentice Hall of India,

Course Code	Course Name	Category	L	T	Р	Credit
	PROBLEM SOLVING FOR NET/SLET	Value added				
Preamble						

The aim of the objectives is to provide basic skills to solve Problems on Physics.

SYLLABUS

UNIT I

VECTOR CALCULUS

Product of vectors – Gradient – Divergence & Curl – Integration of vectors: Linear integration of vectors, Surface integration of vectors, Volume integration of vectors, Linear dependency of vectors, Orthogonal curvilinear co-ordinates.

UNIT II

MATRICES

Eigen values & Eigen vectors – Cayley-Hamilton theorem – Rank of a matrix – Diagonalisation of a matrix – Linear transformation – Applications.

UNIT III

COMPLEX ANALYSIS

Function of complex variables – Complex analytic function – Power series: Expansion of Complex function – Singularity of Complex function – Residue of a Complex function.

UNIT IV

DIFFERENTIAL EQUATIONS

Differential equation of first order and first degree – Linear second order differential equation – Legendre differential equation – Bessel differential equation – Hermite differential equation – Lagauerre differential equation.

UNIT V

TENSOR ANALYSIS

Basic review of tensors – Algebra of tensors – Fundamental tensors – Chrystoffel symbols – Co-variant, contra-variant and mixed tensors.

Text Books

1) Mathematical Physics (revised), H K Dass, S. Chand (2008), ISBN 8121914698, 9788121914697.

2) Mathematical Physics(revised), SatyaPrakash, Sultan Chand & Sons (2014), ISBN 8180549283, 978-8180549281

References Books

- 1) Mathematical Physics, Kalkani S.L 3rd Edition 2009, ISBN 9789386478238.
- 2) Mathematical Physics, B.D Gupta- Vikas publishing house-4th Edition 2009, ISBN 8125930965, 9788125930969.
- 3) Mathematical Physics, Rajput B.S. Pragatiprakashan -23rd Edition-2011

E-Reference:

1. <u>https://nptel.ac.in>courses</u>

c) Extra Credit Course(s):

Courses offered by the department for ADVANCED LEARNERS

Course Code	Course Name	Category	L	Т	Р	Credit	
	ADVANCED INSTRUMENTATION	Core					
Course Objective: By	undergoing the Statistical Mechanics	, one should b	e abl	le to	acq	uire deeper	
knowledge on Statistica	Il Mechanics						
SYLLABUS (10 Hours)							
ERRORS AND MEASUREMENTS Measurement, Instruments-static characteristics of instruments, estimation of static errors and reliability, dynamic characteristics of instruments.							
UNIT II		(10 Hours)					
TRANSDUCERS Classifications of transducers-displacement measurement, strain measurement-stress strain relations,							

resistance strain gauges, Fibre – Optic strain gauges.

UNIT III

PRESSURE MEASUREMENTS

Definition- Pressure units and their conversions, comparison with known dead weights, Force-Summing devices, secondary transducers, vacuum measurement.

UNIT IV

TEMPERATURE MEASUREMENTS

Temperature scale, change in dimensions, electrical properties, thermoelectricity, fibre-optic sensors, Quartz thermometer, change in velocity of sound propagation, radiation pyrometers, thermowells

UNIT V

OTHER FORMS OF MEASUREMENTS

Acceleration and force measurement, Tachometers, Torque measurement, flow measurement, level measurement, signal conditioning, display devices and recording systems

Text Books

1. Introduction to Measurements and Instrumentation – Arun K Gosh, 4th Edition, 2012, PHI Learning Private Limited (Unit 1, 2, 3, 4 & 5)

Course Code	Course Name	Category	L	Τ	Р	Credit
	ADVANCED QUANTUM MECHANICS	Core				

Course Objective: The aim is to make the students to understand the concepts of wave mechanics, Schrödinger equation, 1D and 3D energy eigen value problems, symmetry and conservation laws and approximation methods and theories for the study of chemical bondings.

SYLLABUS

UNIT I

Wave Mechanical concepts: Wave nature of particles – the uncertainty principle – the principle of superposition - wave packet - time-dependent schrodinger equation - interpretation of wave function - ehrenfest's theorem - time-independent schrodinger equation - stationary states admissibility conditions of the wave function

(10 Hours)

(10 Hours)

(10 Hours)

(10 Hours)

(10 Hours)

One Dimensional Energy Eigen Value Problems: Square well potential with rigid walls - Square well potential with finite walls - square potential barrier - Alpha emission - Bloch waves in periodic potential - Kronig-Penney square-well periodic potential - linear harmonic oscillator: Schrodinger method and operator method.

(10 Hours)

(10 Hours)

Three Dimensional Energy Eigen Value Problems: Particle moving in a spherically symmetric potential – system of two interacting particles – rigid rotator – hydrogen atom – hydrogenic orbits – the free particle – three-dimensional square-well potential – the deuteron.

Unit IV

Unit III

Symmetry and Conservation laws: Symmetry transformations- Translation in space: conservation of linear momentum - Translation in time: conservation of energy - Rotation in space: conservation of angular momentum – space inversion: parity conservation – time reversal.

Unit V

Chemical bonding:Born-Oppenheimer approximation – Molecular orbital method – MO treatment of hydrogen molecule ion - Electronic configuration of diatomic molecules - Valence bond method the valence bond treatment of H₂.

Text Books

1. **Quantum Mechanics,** G. Aruldhas, 2nd Edition, 2009, PHI Learning. (All units)

2. Advanced Quantum Mechanics, SatyaPrakash, 2001, KedarNath Ram Nath Co., Meerut.

Reference Books

1. Quantum Mechanics, Leonard I. Schiff, 1968, McGraw-Hill Book Company.

2. Ouantum Mechanics, V. Devanathan, 2005, Narosa Publishing House, New Delhi.

A textbook of Quantum Mechanics, P.M. Mathews and Venkatesan, 27th reprint 2002, Tata McGraw Hill publishing company Ltd., New Delhi.

Course Code	Course Name	Category	L	T	Р	Credit	
	STATISTICAL MECHANICS	Core					
Course Objective:By undergoing the Statistical Mechanics, one should be able to acquire deeper knowledge on Statistical Mechanics							

Unit II

(10 Hours)

SYLLABUS

UNIT I

THE FUNDAMENTALS OF STATISTICAL PHYSICS

Objective of statistical mechanics: macrostates, microstates, phase space and ensembles- Density of states- Density distribution in phase space- Ergodic hypothesis- Postulate of equal a priori probability and equality of ensemble average and time average- Boltzmann's postulate of entropy-Classical ideal gas- Entropy of ideal gas: Gibbs' paradox- Liouville's theorem.

UNIT II

THEORY OF ENSEMBLES

Classification of ensembles- Micro canonical, Canonical and Grand canonical ensembles - Partition function of canonical ensemble- Thermo dynamical quantities by partition function - expression of entropy- Helmholtz free energy- fluctuation of internal energy- chemical potential of ideal gas

UNIT III

QUANTUM STATISTICS

Introduction- Postulates of quantum statistical mechanics- Density matrix- Ensembles in Quantum statistical mechanics- Quantum Liouville theorem- Maxwell law of distribution of velocities- Ideal quantum gases- Bosons- Fermions- BE, FD, MB distributions using GCE partition functions.

UNIT IV

APPROXIMATE METHODS

Classical Cluster expansion- Quantum Cluster expansion- Virial equations of states, Ising model in one, two, three dimensions- exact solutions

UNIT V

PHASE TRANSITIONS

Photon gas- Equation of state- Bose-Einstein condensation- Equation of state of ideal gas - Specific heat from lattice vibration- phase transitions- first and second order phase transitions critical points-Landau's theory- Phonon gas- Theory of Super fluidity- Liquid helium.

Text Books

1. B.B. Laud, Fundamentals of Statistical Mechanics, New Age International Publishers.

(10 Hours)

(10 Hours)

(10 Hours)

(10 Hours)

(10 Hours)

- 2. Kerson Huang, Statistical Mechanics, John Wiley & Sons.
- 3. C. Kittel, Elementary Statistical Physics, John Wiley & Sons.
- 4. R.P. Feynman, Statistical Mechanics, Addison Wesley.
- 5. R.K. Pathria, Statistical Physics, Pergamon, Oxford.
- 6. F. Reif, Statistical and Thermal Physics, McGraw Hill.

Course Code	Course Name	Category	L	Т	Р	Credit
	PLASMA PHYSICS					
Course Objective: The aim is to provide the students, understand the model plasma phenomena						
in the universe and explore the physical processes which occur in the space environment.						

SYLLABUS

UNIT I

(10 Hours)

FUNDAMENTAL CONCEPTS ABOUT PLASMA

Kinetic pressure in a partially ionized - mean free path and collision cross section- mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons - Thermal conductivity - Effect of magnetic field - Quasi neutrality of plasma - Debye shielding distance.

UNIT II

(10 Hours)

(10 Hours)

MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD

Particle description of plasma – Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field - Motion of charged particle in electric and magnetic fields - Motion of charged particle in inhomogeneous magnetic field- Motion of charged particle in magnetic mirror confinement - motion of an electron in a time varying electric field

UNIT III

PLASMA OSCILLATIONS AND WAVES

Introduction, theory of simple oscillations - electron oscillation in a plasma - Derivations of plasma oscillations by using Maxwell's equation - Ion oscillation and waves in a magnetic field - thermal effects on plasma oscillations - Landau damping - Hydro magnetic waves - Oscillations in an electron beam

UNIT IV

(10 Hours)

PLASMA DIAGNOSTICS TECHNIQUES

Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic method - laser as a tool for plasma diagnostics – X ray diagnostics of plasma - acoustic method – conclusion
UNIT V (10 Hours)

APPLICATIONS OF PLASMA PHYSICS

Magneto hydrodynamic Generator - Basic theory - Principle of Working - Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma **Text Books**

- 1. Plasma Physics Plasma State of Matter S.N. Sen, PragatiPrakashan, Meerut
- 2. **Principles of Plasma Diagnostics** I. H. Hutchinson
- 3. Introduction to Plasma Physics F.F.Chen, Plenum Press, London
- 4. Plasma Diagnostic Techniques R.H. Huddlestone & S.L. Leonard