P.K.R. ARTS COLLEGE FOR WOMEN (AUTONOMOUS)

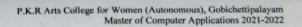
(Accredited with 'A' grade by NAAC - Affiliated to Bharathiar University, Coimbatore)

GOBICHETTIPALAYAM - 638 476.

DEPARTMENT OF COMPUTER SCIENCE MASTER OF COMPUTER APPLICATIONS

BOARD OF STUDIES

For the candidates admitted from the Academic Year 2021-2022 and onwards


Under CBCS PATTERN

PROGRAMME STRUCTURE

CBCS: 2021 - 2022

Part	Components	No. of Courses	Credit(s) / Course	Total Credits	Proposed Semester
PART- III	Core Courses: A) Core and Elective Courses: (Theory/Practical)	21	2/2/4/12	82	1.137
	B) Project: (Mini Project/ Major Project)	2	2/3/4/12	I-IV	
PART – IV	Ability Enhancement Course: Cyber Security	1	2	2	п
	A. Proficiency Enhancement : Self Study Course	1	2		III
PART - V	B. Competency Enhancement: i) Online Course / Learning Object Repository	1	2		I to IV
	ii) Certificate Course	1	2		I to IV

Total Marks: 2500 and Credits: 90

MASTER OF COMPUTER APPLICATIONS

Course Scheme and Scheme of Examinations (For students admitted from 2021-2022 & onwards) Scholastic Courses

				/ week	ation	М	ax. Mai	rks	ts
Part	Category	Code		Contact Hrs/ week	Exam Duration hrs.	CIA	ESE	Total marks	Credits
			SEMESTER-I						
III	Core: I	21CAP01	Advanced Java Programming	4	3	50	50	100	4
III	Core: II	21CAP02	Relational Database Management System	4	3	50	50	100	4
III	Core: III	21CAP03	Computer Networks	4	3	50	50	100	4
III	Core: IV	21CAP04	Operations Research	4	3	50	50	100	4
Ш	Core: V Elective: I	21CAP05A/ 21CAP05B/ 21CAP05C/ 21CAP05D	Mobile Computing/ Business Intelligence/ Cloud Computing/ Service Oriented Architecture	4	3	50	50	100	3
III	Core: VI Practical: I	21CAP06	Advanced Java Programming – Practical	5	3	50	50	100	3
Ш	Core: VII Practical: II	21CAP07	Relational Database Management System— Practical 5 3		3	50	50	100	3
			TOTAL	30				700	25
			SEMESTER-II						
III	Core: VIII	21CAP08	Data Structures and Algorithms	4	3	50	50	100	4
III	Core: IX	21CAP09	Web Programming	4	3	50	50	100	4
Ш	Core: X	21CAP10	Software Project Management	4	3	50	50	100	4
III	Core: XI	21CAP11	Operating System	4	3	50	50	100	4
III	Core: XII Elective: II	21CAP12A/ 21CAP12B/ 21CAP12C/ 21CAP12D	Artificial Intelligence/ Adhoc and Sensor Networks/ Digital Image Processing/ Virtual Reality Systems	4	3	50	50	100	3
III	Core: XIII Practical: III	21CAP13	Data Structures And Algorithms Using Java- Practical	4	3	50	50	100	2
Ш	Core: XIV Practical: IV	21CAP14	Web Programming - Practical	4	3	50	50	100	-
IV	Ability Enhancement	21AEP01	Cyber Security	2	-	100	-	100	
		A SALAS	TOTAL	30				800	2

			P.K.R Arts College for \	Women ((Autonon Compute	nous), Go r Applica	bichettip	alayam 1-2022	
			SEMESTER-III						
III	Core: XV	21CAP15	Data Mining and Big Data Analytics	5	3	50	50	100	4
III	Core: XVI	21CAP16	Machine Learning using Python	4	3	50	50	100	4
III	Core: XVII	21CAP17	Network Security and Cryptography	5	3	50	50	100	4
Ш	Core: XVIII Elective: III	21CAP18A/ 21CAP18B/ 21CAP18C/ 21CAP18D	Internet of Things/ Soft Computing/ Theory of Computation/ Research Methodology	43	3	50)	650	100	3.
III	Core :XIX Practical: V	21CAP19	Data Mining and Big Data Analytics - Practical	4	3	50	50	100	2
Ш	Core :XX Project: I	21CAP20	Mini Project and Viva voce	5	-	50	50	100	3
Ш	Core: XXI	21CAP21	Open Elective offered for students of other PG Programmes/Departments	3	3	50	50	100	2
V	Proficiency Enhancement	21PEP01	Management Information System (Self Study)	-	3	-	-	100	2
			TOTAL	30				800	24
			SEMESTER-IV						
III	Core: XXII Project: II	21CAP22	Major Project and Viva-voce	-	-	100	100	200	12
V	Compatan	Enhancement	Online Course / Learning Object Repository(LOR)		5	SEMES	ΓER I-I	V	2
_	Competency	Enhancement	Certificate Course			SEMES	TER I-I	V	2
			TOTAL	-	-	-	-	2500	90

P. H. eh.

Head, Department of Computer Science P.K.R. Arts College for Women (Autonomous) Gobichettipalayam - 638 476.

(For those admitted from the academic year 2021 and onwards)

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART-III	CORE: I	21CAP01	ADVANCED JAVA PROGRAMMING	48	4

Contact hours per semester: 48 Contact hours per week: 4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	I	50	50	100

Preamble

To understand the java class & objects, packages, threads, interfaces and Advanced Java programming concepts.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Outline the concepts of Java Programming Language	K1
CO2	Explain the concepts of packages and multithreads, Java	K2
	collections, Networking , JDBC and Servlets	
CO3	Summarizes the concepts of event handling and graphics	K3
	programming	
CO4	Analyze the networking concepts and socket programming	K4
CO5	Applying the java programming techniques for solving the	K5
	given problem	
CO6	Develop simple projects for the real time applications	K6

K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	9	3
CO4	9	9	9	9	3	9	3
CO5	9	9	9	9	3	9	1
CO6	9	9	9	9	3	9	1
Total contribution of COs to POs	54	54	54	54	18	54	14
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	2.8	5.4	2.4

UNIT I: Overview of Java (8 Hours)

Introducing Classes: Class Fundamentals – Declaring Objects – Introducing Methods – Constructors – The this keyword – Garbage Collection – Overloading Methods - Understanding static – final. Inheritance: Inheritance Basics – Using super – Method overriding –Dynamic Method Dispatch- Using Abstract Class

UNIT II: Java Packages & Threads (10 Hours)

Packages and Interfaces: Declaring Packages – Access Protection – Importing Packages – Defining, Implementing, Applying Interfaces - Exception Handling: Exception Types – try, catch – throw – throws – finally – Creating User-defined Exceptions. Multithreaded Programming: The Java Thread Model – Creating a Thread – Thread Priorities - String Handling

UNIT III: The Collections Framework (10 Hours)

The Collection Interfaces - Collection Classes - StringTokenizer - Date classes. IO Classes and interfaces - File - StreamClass - ByteStream - CharacterStream

UNIT IV: Networking (10 Hours)

Networking: Networking Basics – InetAddress- TCP/IP Client and Server Sockets-URL-Datagrams. Java Database Connectivity: Establishing a connection – Creation of data tables – Entering data into table – Table Updating – Use of PreparedStatement – obtaining metadata – using transactions.

UNIT V: Event Handling (10 Hours)

Event Handling: Event Model – Event Classes – Event Listeners and Interfaces. – Working with Windows, Graphics, and text- The Tour of Swing Component classes: Icons and JLabels - JText Fields – JButtons - JCombo boxes - JTabbed and JScroll Panes – JTrees– JTables - Servlets

- Herbert Schildt, The Complete Reference Java 2, Fifth Edition, TMH Education Pvt. Ltd., 2002
- 2. C. Muthu, Programming with Java, Vijay Nicole imprints private Limited, 2004
- 3. Herbert Schildt with Joe O' Neil, Java Programmer's Reference, TMH, 2004

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: II	21CAP02	RELATIONAL DATABASE MANAGEMENT SYSTEM	48	4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	I	50	50	100

Preamble:

This course covers the basic concepts of database management systems, relational database design, SQL, PL/ SQL and emphasize methods to organize, maintain and retrieve information efficiently and effectively.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Understand the basic concepts of database system	K1
CO2	Learn about basics of oracle9i and creation of tables	K2
CO3	Apply various DML commands and functions on tables	К3
CO4	Explore PL/SQL programming concepts using simple programs	K4
CO5	Illustrate the advanced concepts of PL/SQL	K5
CO6	Formulate solutions to a broad range of query and data update	K6
	Problems	

K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	9	1
CO4	9	9	9	9	3	9	1
CO5	9	9	9	9	3	9	1
CO6	9	9	9	9	3	9	1
Total contribution of COs to POs	54	54	54	54	18	54	10
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	2.8	5.4	1.7

UNIT I: Introduction to Database System (8 Hours)

Database Concepts: A Relational approach: Database – Relationships – DBMS – Relational Data Model – Integrity Rules – Theoretical Relational Languages. Database Design: Data Modeling and Normalization: Data Modeling – Dependency – Database Design – Normal forms – Dependency Diagrams - Denormalization – Another Example of Normalization.

UNIT II: Oracle9i and Oracle Tables (10 Hours)

Oracle9i: Overview: Personal Databases – Client/Server Databases – Oracle9i an introduction – SQL *Plus Environment – SQL – Logging into SQL *Plus - SQL *Plus Commands – Errors & Help – Alternate Text Editors - SQL *Plus Worksheet - iSQL *Plus. Oracle Tables: DDL: Naming Rules and conventions – Data Types – Constraints – Creating Oracle Table – Displaying Table Information – Altering an Existing Table – Dropping, Renaming, Truncating Table – Table Types – Spooling – Error codes.

UNIT III: Working with Table (10 Hours)

Working with Table: Data Management and Retrieval: DML – adding a new Row/Record – Customized Prompts – Updating and Deleting an Existing Rows/Records – retrieving Data from Table – Arithmetic Operations – restricting Data with WHERE clause – Sorting – Revisiting Substitution Variables – DEFINE command – CASE structure. Functions and Grouping: Built-in functions –Grouping Data. Multiple Tables: Joins and Set operations: Join – Set operations.

UNIT IV: PL/SQL (10 Hours)

PL/SQL: A Programming Language: History – Fundamentals – Block Structure – Comments – Data Types – Other Data Types – Declaration – Assignment operation – Bind variables – Substitution Variables – Printing – Arithmetic Operators. Control Structures and Embedded SQL: Control Structures – Nested Blocks – SQ L in PL/SQL – Data Manipulation – Transaction Control statements. PL/SQL Cursors and Exceptions: Cursors – Implicit & Explicit Cursors and Attributes – Cursor FOR loops – SELECT...FOR UPDATE – WHERE CURRENT OF clause – Cursor with Parameters – Cursor Variables – Exceptions – Types of Exceptions.

UNIT V: PL/SQL Composite Data Types (10 Hours)

PL/SQL Composite Data Types: Records – Tables – Varrays. Named Blocks: Procedures – Functions – Packages – Triggers – Data Dictionary Views.

TEXT BOOK:

1.Nilesh Shah, Database Systems Using Oracle, 2nd edition, PHI. (UNIT-I: Chapters 1 & 2, UNIT-II: Chapters 3 & 4, UNIT-III: Chapters 5 & 6, UNIT-IV: Chapters 10 & 11, UNIT-V: Chapters 12, 13 & 14).

- 1. Abraham Silberschatz, Henry F.Korth, S.Sudarshan, Database System Concepts, 5thEdition, TMH.
- 2. Alexis Leon, Mathews Leon, Fundamentals of Database Management Systems, Vijay Nicole Imprints Private Limited.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: III	21CAP03	COMPUTER NETWORKS	48	4

YEAR	YEAR SEMESTER INTERNAL MARKS		EXTERNAL MARKS	TOTAL MARKS	
I	I	50	50	100	

Preamble:

To understand the concepts of data communication over Computer Networks

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Describe the concepts, reference models and various layers of	K1
	computer networks	
CO2	Explain the v principles, protocols and algorithms of different layers	K2
	of OSI reference models	
CO3	Apply the error detection and correction techniques and routing	К3
	algorithms for efficient and error free transmission in networks	
CO4	Analyze the various routing algorithms for handling internal traffic	K4
	efficiently	
CO5	Illustrate the data transmission services and connection	K5
	establishment on network	
CO6	Create innovative error detection and correction algorithms and	K6
	routing algorithms for effective data transmission over network.	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	3	9
CO3	9	9	9	3	3	3	3
CO4	9	9	3	3	3	1	1
CO5	9	9	3	3	1	1	1
CO6	9	9	3	3	1	1	1
Total contribution of COs to POs	54	54	36	30	26	18	24
Weighted Percentage COs Contribution to POs	4.2	4.5	3.0	2.6	4.1	1.8	4.1

UNIT I: Introduction to Communication on Networks (8 Hours)

Data Communications – Networks – Internet – Protocols and Standard. Network Models: Layers in the OSI Model – TCP/IP Protocol Suite – Addressing.

UNIT II: Physical Layer (10 Hours)

Analog and Digital – Transmission Impairment -Digital to Digital Conversion - Analog to Digital Conversion – Transmission Modes – Digital to Analog Conversion – Multiplexing - Transmission Medium.

UNIT III: Data Link Layer (10 Hours)

Error Detection and Correction: Introduction – Block Coding – Cyclic Codes. Data link Control: Framing –Flow and Error Control – Protocols –Noiseless and Noisy Channels. Multiple Access: Random Access – Channelization. Wired Lans: Standard Ethernet. Wireless Lans.

UNIT IV: Network Layer (10 Hours)

IntroductionConnecting Lans, Backbone Networks and Virtual Lans: Connecting devices - Backbone Networks - Virtual Lans. Network Layer: IPV4 Addresses - IPV6 Addresses - Internetworking - Transition from IPV4 to IPV6.

UNIT V: Transport Layer and Application Layer (10 Hours)

Transport Layer: Process – to –Process Delivery - UDP –TCP – Congestion – Congestion Control – Quality of Services. Application Layer: Namespace – DNS –Remote Logging – E-Mail –FTP – WWW and HTTP: Architecture.

- 1. B. A. Forouzan, "Data Communications and Networking", Tata McGraw Hill, 4thEdition, 2007.
- 2. F. Halsall, "Data Communications, Computer Networks and Open Systems", Pearson Education, 2008
- 3. D. Bertsekas and R. Gallagher, "Data Networks", 2ndEdition, PHI, 2008.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: IV	21CAP04	OPERATIONS RESEARCH	48	4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	I	50	50	100

Preamble

To enable the students to gain the knowledge about Linear Programming Problem and Methods to solve an L.P.P.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	outline the meaning, purpose and tools of LPP, assignment,	K1
	replacement, sequencing and pert model	
CO2	express the procedures and steps for LPP, assignment,	K2
	replacement, sequencing and pert model	
CO3	illustrate the methodologies to get the optimal solution and the	K3
	period of replacement	
CO4	analyze the concepts of LPP, assignment, replacement,	K4
	sequencing and pert model	
CO5	evaluate different situations after the solution of LPP,	K5
	assignment, replacement, sequencing and pert problems	
CO6	construct LP and Replacement models for various type of	K6
	problems	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	3	1
CO4	9	9	9	9	1	3	1
CO5	9	9	9	9	1	3	1
CO6	9	9	9	9	0	3	0
Total contribution of COs to POs	54	54	54	54	15	30	21
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	1.7	3.0	3.6

UNIT I: Linear Programming (10 Hours)

Formulation of LPP - Simplex Method - Big M method - Two Phase Simplex Method.

UNIT II: The Assignment Problem (10 Hours)

Introduction – Mathematical formulation - Hungarian Assignment Method – Maximization in Assignment Problem – Unbalanced Assignment Problem.

UNIT III: Replacement Model (10 Hours)

Introduction – Replacement of items that deteriorates gradually : value of money does not change with time – Value of money changes with time – Replacement of items that fails suddenly - Individual Replacement – Group Replacement.

UNIT IV: Sequencing Problems (10 Hours)

Introduction-Problem of sequencing - Basic terms used in sequencing- Processing n-jobs through 2 machines - Processing n –jobs through k machines - Processing 2 jobs through k machines(Problems only).

UNIT V: PERT (8 Hours)

Introduction – Construction of Network - PERT Calculations.

NOTE: *No Derivations and Proof, Simple Problems Only.*

TEXT BOOK:

1. KantiSwarup, P.K.Gupta, ManMohan(2012), "Operations Research", 16th Edition, Publishing Sultan chand& Sons, New Delhi.

UNIT	CHAPTER	SECTION
I	2	2.3 – 2.4,
	4	4.3 – 4.4
II	11	11.1 – 11.4
III	18	18.1 –18.3
IV	12	12.1 – 12.6
V	25	25.1 –25.5, 25.7

- 1. Frederick S. Hillier, Gerald J. Lieberman "Introduction to Operations Research", Tata McGraw Hill Pub Company Ltd., Seventh Edition.
- 2. Gupta.P.K., Hira.D.S. "Problems in Operations Research", S.Chand& Company Ltd.
- 3. Sharma.J.K. "Operations Research Theory and Applications", Macmillan India Ltd., Second Edition.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: V ELECTIVE: I	21CAP05A	MOBILE COMPUTING	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	
I	I	50	50	100	

Preamble:

To understand mobile computing applications, techniques and environment

Course Outcomes:

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge	
Number		Level	
CO1	Explain the features of mobile communication and its services	K1	
CO2	Identify the features of various technologies	K2	
CO3	Classification of Mobile data networks in Mobile	К3	
	Communication		
CO4	Analyze network security in communication	K4	
CO5	Evaluate the intent based frameworks in an application	K5	
CO6	Generate adhoc networks with security	K6	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	3	9	3	3	9	3
CO5	9	3	3	3	3	3	3
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

UNIT I: Introduction (10 Hours)

Introduction: Advantages of Digital Information - Introduction to Telephone Systems: Telephones-Control Functions-Telephone Traffic-Switching-Wireless Information Networks—Information Transmission-Cross Talk-Transmission Links-State Diagram for Telephone Network- Modems. Mobile communication: Need for Mobile Communication — Requirements of Mobile Communication — History of Mobile Communication.

UNIT II: Mobile Communication (10 Hours)

Introduction to Cellular Mobile Communication: Cellular Structure-Frequency Reuse-System Architecture-Traffic and Switching Techniques. Mobility Management: Handoff Techniques-Handoff Detection and Assignment-Types of Handoff-Radio Link Transfer-Roaming Management. Cordless Mobile Communication Systems: Cordless Telephone at Home-Multichannel Cordless Telephone System-Wireless Private Box Exchange.

UNIT III: Mobile Computing (10 Hours)

Mobile Computing: History of data networks – Classification of Mobile data networks - CDPD System – Satellites in Mobile Communication: Satellite classification – Global Satellite Communication – Changeover from one satellite to other.

UNIT IV: Mobile Internet (8 Hours)

Mobile Internet: Working of Mobile IP – Wireless Network Security: Wireless Threats-Authentication and Access Control- Secrecy in Communication -Security Arrangement in CDMA-Security of Wireless Data Networks. Wireless Application Protocol: Properties of WAP- Bearer Services-WAP Components Integration-WAP Client Supporting Networks.

UNIT V: Communication System (10 Hours)

Ad hoc Network and Bluetooth technology: Need for Ad hoc Networks-MANET and Technical Factors Affecting Ad hoc Network-Bluetooth Technology. Intelligent Mobile Communication system: Types of Intelligent Cells-Power Delivery Intelligent Cells-Processing Gain Intelligent Cells. Fourth Generation Mobile Communication systems: User Controlled Services-Reconfigurable Technology-Vision 4G-4G Mobile System Convergence.

- 1. T.G. Palanivelu, R. Nakkeeran, "Wireless and Mobile Communication", PHI Limited, 2009
- 2. Jochen Schiller, "Mobile Communications", Pearson Education, Second Edition, 2007.
- 3. Asoke K Talukder, Hasan Ahmed, Roopa Yavagal, "Mobile Computing", TMH, 2009.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: V ELECTIVE: I	21CAP05B	BUSINESS INTELLIGENCE	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	
I	I	50	50	100	

Preamble:

To understand the principles of Business Intelligence.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Recall to understand the basics of Business Intelligence	K1
CO2	Interpret the concept of Decision Support Systems and	K2
	Business Intelligence	
CO3	Build knowledge on Decision making, systems, modeling and	К3
	support	
CO4	Analyze an insight on Knowledge Management	K4
CO5	Assess Business Intelligence implementation	K5
CO6	Imagine Integration and Emerging Trends	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	3
CO4	9	3	9	3	3	3	3
CO5	9	3	3	3	3	9	9
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

Level of correlation: 0-No correlation; 1-Low correlation;

3-Medium correlation; 9-High correlation between COs and POs.

UNIT I: Introduction to Business Intelligence (BI) (8 Hours)

Introduction – Changing Business Environments and Computerized Decision Support – A Framework of BI – Imtelligent Creation and use and BI Governance – Transaction Processing versus Analytic Processing – Successful BI Implementation – Major Tools & Techniques of BI

UNITII: Decision Support Systems and BI (10 Hours)

Managerial Decision making – Computerized support for Decision making – An early framework for computerized decision support -. The concept of Decision support system – A framework for BI -A work system view of decision support

UNIT III: Decision making, systems, modeling and support (10 Hours)

Decision making: Introduction and Definitions – Models – Phases of the Decision-making process – Decision making: The Intelligent Phase – Decision making: The Design Phase – Decision Making: The Choice Phasr - Decision making: The Implementation Phase How Decisions are supported.

UNIT IV: Knowledge Management (10 Hours)

Introduction to Knowledge Management – Organizational Learning and Transformation – Knowledge Management Activities – Approaches to Knowledge Management – Information Technology in Knowledge Management – Knowledge Management system implementation – Roles of people in Knowledge Management

UNIT V: Business Intelligence implementation: Integration and Emerging Trends (10 Hours)

Implementing BI: An Overview –BI and Integration Implementation – Connecting BI systems to databases and other enterprise systems – On-Demand BI. Issues of Legality, privacy and ethics – Emerging topics in BI: An Overview – Online Social Networking: Basics and examples – Social Networks and BI" Collaborative Decision Making.

REFERENCE BOOKS

- 1. Efraim Turban, Ramesh Sharda, Dursun Delen, David King, "Business Intelligence: A Managerial Approach" Pearson, Second Edition (Units I & V)
- 2. Efriam Turban, Ramesh Sharda, Dursun Delen, "Decision Support and Business Intelligence Systems", Pearson, Ninth Edition (Units II, III, IV)
- 3.Ramesh Shrada, Dursun Delen, Efraim Turban,"Business Intelligence : A Managerial Perspective on Analytics", Pearson, Third Edition
- 4. Galit Shmueli, Nitin R. Patel, Peter C. Bruce,"Data ming for Business Intelligence", Wiley.

WEB REFERENCES:

https://www.selecthub.com/business-intelligence/key-types-business-intelligence-tools/

https://www.youtube.com/watch?v=5ssrUx-jivc

https://www.youtube.com/watch?v=KJHBIIgRyeo

https://www.slideshare.net/BodiBeatBox/ethical-issues-of-business-intelligence-bi

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: V ELECTIVE: I	21CAP05C	CLOUD COMPUTING	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	I	50	50	100

Preamble:

To understand the Cloud computing architectures, applications, services and security

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
Number		
CO1	Understand the basics of Cloud Computing ,Working, Benefits	K1
CO2	Explain the knowledge of cloud architecture and tools	K2
CO3	Analyze the concepts of cloud computing Services and Security	К3
CO4	Determine the virtualization and data storage in cloud	K4
CO5	Apply the Future Cloud in applications	K5
CO6	Discuss the applications of Cloud computing	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	3	9	3	3	9	3
CO5	9	3	3	3	3	3	3
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

UNIT I: Cloud Computing Basics (8 Hours)

Cloud Computing Overview - Applications - Intranets and the cloud - First movers in the cloud - Benefits - limitations of cloud computing - Security Concerns.

UNIT II: Cloud Computing Architecture & Tools (10 Hours)

Cloud Computing Architecture : Cloud Computing Technology - Cloud Architecture - Cloud Modeling and Design - Cloud Computing Tools : Tools and Technologies for Cloud - Cloud Mashups - Apache Hadoop - Cloud Tools

UNIT III: Cloud Computing Services and Security (10 Hours)

Cloud Computing Services: Cloud Computing Elements – Understanding Services and Applications by Type – Cloud Services – Cloud Computing at Work – Cloud Computing and Security: Risks in Cloud Computing – Data Security in Cloud – Cloud Security Services

UNIT IV: Virtualization and Data Storage (10 Hours)

Virtualization: Foundations – Grid, Cloud and Virtualization – Virtualization and Cloud Computing – Data Storage and Cloud Computing: Data Storage – Cloud Storage – Cloud Storage from LANs to WANs

UNIT V: Future Cloud and It's Applications (10 Hours)

Future Cloud: Future Trends – Mobile Cloud – Autonomic Cloud Engine – Multimedia Cloud – Energy Aware Cloud Computing – Jungle Computing – Case Studies.

REFERENCES:

- 1. A. Srinivasan, J.Suresh, "Cloud Computing A Practical approach for learning and implementation", Pearson
- 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", McGraw Hill.
- 3. Michael Miller, "Cloud Computing", Pearson Education, New Delhi, 2009.
- 4. Rajkumar Byya, James Broberg, Andrzej Goscinski, "Cloud Computing Principles and Paradigms", Wiley & sons

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: V ELECTIVE: I	21CAP05 D	SERVICE ORIENTED ARCHITECTURE	48	3

	Contract notice but worth i							
YEAR	SEMESTER	INTERNAL	EXTERNAL	TOTAL				
	SEVIESTER	MARKS	MARKS	MARKS				
I	I	50	50	100				

Preamble:

To educate students in implementing SOA in industries. It gives the overview of pros and cons of SOA and explains when, why and which part of SOA you should use in live environment or project designing.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Describe about evolution, characteristics and services in SOA with	K1
	SOA architecture, WSDL, SOAP and UDDI.	
CO2	Explain basic principles of SOA in project solutions that require	K2
	problem solving, inference, perception, knowledge representation,	
	and learning.	
CO3	Illustrate awareness and a fundamental understanding of various	К3
	applications of SOA & WS techniques in knowledge representation	
	methods and expert systems.	
CO4	Analyze the SOA Architectural style, SOA strategies, modeling	K4
	web services.	
CO5	Design, implementing process of SOA in web service.	K5
CO6	Apply the SOA operational style for the web services.	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	3
CO4	9	3	9	3	3	3	3
CO5	9	3	3	3	3	9	9
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

UNIT I: Roots and Anatomy of SOA (8 Hours)

Roots of SOA: Characteristics of SOA - Comparing SOA to client-server and distributed internet architectures.

Anatomy of SOA: How components in an SOA interrelate - Principles of service orientation.

UNIT II: Web Services (10 Hours)

Web services: Service descriptions – Messaging with SOAP –Message exchange Patterns – Coordination –Atomic Transactions – Business activities – Orchestration – Choreography.

UNIT III: Service Layer (10 Hours)

Service layer: Abstraction – Application Service Layer – Business Service Layer – Orchestration Service Layer.

UNIT IV: Service oriented analysis & Entity-centric business (10 Hours)

Service oriented analysis: Business-centric SOA – Deriving business services modeling - Service Oriented Design – WSDL basics – SOAP basics – SOA composition guidelines.

Entity-centric business: service design – Application service design – Taskcentric business service design.

UNIT V: SOA platform basics & WS-BPEL basics (10 Hours)

SOA platform basics: SOA support in J2EE – Java API for XML-based web services (JAX-WS) - Java architecture for XML binding (JAXB) – Java API for XML Registries (JAXR) - Java API for XML based RPC (JAX-RPC)- Web Services Interoperability Technologies (WSIT) - SOA support in .NET – Common Language Runtime - ASP.NET web services – Web Services Enhancements (WSE).

WS-BPEL basics: WS-Coordination overview - WS-Choreography, WSPolicy, WSSecurity. Learning Resources

- 1. Thomas Erl, "Service-Oriented Architecture: Concepts, Technology, and Design", Pearson Education, 1/e, 2005.
- 2. Thomas Erl, "SOA Principles of Service Design "(The Prentice Hall Service-Oriented Computing Series from Thomas Erl), 2005.
- 3. Newcomer, Lomow, "Understanding SOA with Web Services", Pearson Education, 2005.
- 4. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services, An Architect's Guide", Pearson Education, 2005.
- 5. Dan Woods and Thomas Mattern, "Enterprise SOA Designing IT for Business Innovation" O'REILLY, 1/e, 2006.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
DADE III	CORE: VI	21 C A DOC	ADVANCED JAVA	CO	•
PART – III	PRACTICAL: I	21CAP06	PROGRAMMING-	60	3
			PRACTICAL		

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	I	50	50	100

Preamble:

The Course provides hands on experience on implementing the concepts of object oriented programming, event driven programming, packages, JDBC and JSP.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Recall the concepts of Java Programming Language	K 1
CO2	Understand the concepts of packages and multithreads	K2
CO3	Apply JDBC concept for database connectivity	К3
CO4	Analyze the networking concepts in java programming	K4
CO5	Illustrate event handling concepts and servlet	K5
CO6	Develop simple projects for the real time applications	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	9	9	3	9	3
CO4	9	9	9	9	3	9	3
CO5	9	9	9	9	3	9	3
CO6	9	9	9	9	3	9	3
Total contribution of COs to POs	54	54	54	54	30	54	18
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	4.7	5.4	3.1

- 1. Program to demonstrate the multilevel inheritance.
- 2. Program to prepare students mark sheet using package concept.
- 3. Program to create a thread using Thread class.
- 4. Program to find the machine and host IP address.
- 5. Program to send a file from one system to another using TCP/IP model.
- 6. Program to prepare Student attendance report using JDBC.
- 7. Program to prepare EB-Bill using JDBC.
- 8. Program to implement event driven programming.
- 9. Program to implement swing components.
- 10. Program to implement Servlet concepts.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTAC T HOURS	CREDIT (C)
PART – III	CORE: VII PRACTICAL: II	21CAP07	RELATIONAL DATABASE MANAGEMENT SYSTEM- PRACTICAL	60	3

Contact hours per semester: 60

Contact hours per week: 5

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	I	50	50	100

Preamble:

This course covers the basics on creating database tables using SQL, develop efficient PL/SQL programs to access Oracle databases and manage data retrieval with cursors and cursor variables, Stored Procedures, Functions, Packages and Triggers (PL/SQL Programming). It is designed to provide hands-on experience to create database-level applications using Oracle SQL and PL/SQL.

Course Outcomes

On successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Relate the basic concepts of relational database system.	K1
CO2	Illustrate the features available in a RDBMS package	K2
CO3	Construct appropriate SQL queries and PL/SQL Programs for database application.	K3
CO4	Analyze different database requirements and design effective database.	K4
CO5	Assess data in tables against appropriate constraints.	K5
CO6	Propose solutions to a broad range of real time applications using PL/SQL	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	9	3
CO4	9	9	9	9	3	9	1
CO5	9	9	9	9	3	9	1
CO6	9	9	9	9	3	9	1
Total contribution of COs to POs	54	54	54	54	18	54	12
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	2.8	5.4	2.1

Level of correlation: 0-No correlation; 1-Low correlation;

3-Medium correlation; 9-High correlation between COs and POs.

- 1. Write SQL queries for Data Definition and Data Manipulation Language.
- 2. Write SQL queries using logical operations and operators.
- 3. Write SQL queries for group functions.
- 4. Write SQL queries for sub queries.
- 5. Write SQL queries to implement JOINS.
- 6. Write queries to understand the concepts for ROLL BACK, COMMIT & CHECK POINTS.
- 7. Write PL/SQL Function to find Armstrong numbers from 1 to n.
- 8. Write PL/SQL code to update values in created tables by using Explicit Cursors.
- 9. Write a PL/SQL Procedure to check the given number is prime or not by using call procedure
- 10. Write PL/SQL Program to handle the Exceptions.
- 11. Write PL/SQL code to implement Trigger.
- 12. Write PL/SQL Program to create and execute a package.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: VIII	21CAP08	DATA STRUCTURES AND ALGORITHMS	48	4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	II	50	50	100

Preamble

The Paper offers the depth understanding and knowledge of different data structures, algorithms and their applications.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Recognize various data structures, algorithms and sorting methods	K1
CO2	Visualize the range of data structure and algorithm concepts	K2
CO3	Apply appropriate data structures and algorithm to solve real time applications	К3
CO4	Investigate various data structures and algorithm to uncover optimal solutions for the computational problems	K4
CO5	Justify the relevance of an algorithm for a specific application with respect to space and time complexity	K5
CO6	Devise innovative and efficient data structure and algorithm for solving the complex real time problems	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	9	3
CO4	9	9	9	9	3	9	3
CO5	9	9	9	9	3	9	1
CO6	9	9	9	9	3	9	1
Total contribution of COs to POs	54	54	54	54	18	54	14
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	2.8	5.4	2.4

 $\ \, \textbf{Level of correlation: 0-No correlation; 1-Low correlation;} \\$

3-Medium correlation; 9-High correlation between COs and POs.

UNIT I: Data Structure: Introduction and Linear Data Structures (10 Hours) Introduction-Data structure- Definition-— Arrays - Order List — Sparse Matrices - Representation of Arrays - Stacks and Queues — Fundamentals - Evaluation of Expression - Multiple Stacks and Queues.

UNIT II: Linked Lists and Non Linear Data Structures (9 Hours)

Linked Lists: Singly Linked List - Linked Stacks and Queues - Polynomial Addition - Doubly Linked Lists - Tress: Basic Terminology-Binary Trees-binary Tree Representation - Binary Tree Traversal. Graphs: Terminology and representation - Introduction - Definition and Terminology-Graph Representation - Traversals.

UNIT III: Algorithm: Introduction and Divide and Conquer Method (11 Hours)

What is algorithm – Algorithm Specification – Performance Analysis: Space Complexity - Time Complexity – Asymptotic Notation. Divide and Conquer: General Method - Binary Search - Finding the maximum and minimum - Merge sort - Quick sort – Selection.

UNIT IV: Greedy Method (9 Hours)

Greedy Method: General Method - Knapsack problem - Job sequencing with deadlines - Optimal merge patterns - minimum spanning trees - Single source shortest paths.

UNIT V: Dynamic Programming (9 Hours)

Dynamic Programming: General Method - Multistage Graphs- All pair shortest path - Optimal binary search trees - 0/1 Knapsack - Traveling Salesperson problem.

- 1. Ellis Horowitz, Sartaj Shani, Fundamentals of Data Structures, First Edition, Galgotia Publication.
- 2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, (2008), Fundamentals of Computer Algorithms, Second Edition, Hyderabad Universities Press (India) Private Limited Publication.
- 3. Seymour Lipschutz, G.A. Vijayalakshmi Pai, Data Structures, Tata McGrawhill, Year 2006.
- 4. D. Samanta, "Classical Data Structure", Prentice Hall India, ISBN: 8120318749.
- 5. Coremen T H, Leiserson C E, Rivest R L and Stein, Clifford, Introduction to algorithms, PHI, 2nd Edition, 2009.
- 6. Anany Levitin, Introduction to the Design and Analysis of Algorithm, Pearson Education.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: IX	21CAP09	WEB PROGRAMMING	48	4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	II	50	50	100

Preamble

To enable the students to learn the concepts of web Programming techniques

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define the basic of Dynamic HTML, Java Script, Perl and PHP	K1
CO2	Explain Exception Handling Array, Hashes in Perls	K2
CO3	Choose the best suitable web programming techniques for developing a Personal Blog.	K3
CO4	Make use of Dynamic web pages using Events.	K4
CO5	Discuss on Dynamic content Modifying	K5
CO6	Design and Implement Object Class in Java Script	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	3	1
CO2	9	9	9	9	1	1	1
CO3	9	9	9	9	9	9	1
CO4	9	9	9	9	9	3	3
CO5	9	9	9	9	9	3	1
CO6	9	9	9	9	3	3	1
Total contribution of COs to POs	54	54	54	54	34	22	8
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	5.4	2.2	1.4

Level of correlation: 0-No correlation; 1-Low correlation;

3-Medium correlation; 9-High correlation between COs and POs.

UNIT I: An Introduction to JavaScript (8 Hours)

What is Dynamic HTML? - Java Script-Java Script Basics - Variables-String Manipulation - Mathematical Functions - Statements - Operators - Arrays - Functions.

UNIT II: Objects in JavaScript (10 Hours)

Data and Objects in JavaScript - Regular Expressions - Exception Handling - Built in Objects - Events - Dynamic HTML with Java Script - Data Validation - Opening a New Window - Messages and Confirmations - The Status Bar - Writing to a Different Frame - Rollover Buttons-Moving Images - Multiple Pages in a single Download.

UNIT III: Programming in Perl5 (10 Hours)

Why Perl? - Online Documentation - The Basic Perl Program - Scalars - Arrays - Hashes - Control Structures - Processing Text - Regular Expressions - Using Files.

UNIT IV: An Introduction to PHP (10 Hours)

PHP – Using PHP – Variables - Program Control - Built Functions - Exercises.

UNIT V: Introducing JQuery (10 Hours)

Making jQuery Work-Working With DOM-Working with Events – Using the Photographer's Exchange Web Site-Making Navigation Graceful-Creating and Calling Modal Windows-Binding Events to Other Elements.

- 1. Chris Bates , "Web Programming Building Internet Applications", Wiley Dreatech India PVT.Ltd,Second Edition,2006
- 2. Jay Blanchard "Applied jQuery Develop and Design", Pearson Publications, 2013.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: X	21CAP10	SOFTWARE PROJECT MANAGEMENT	48	4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	II	50	50	100

Preamble

To understand the fundamental principles of software project management and different methods and techniques used for project management

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
Number		
CO1	Choose the Product Life Cycle model and metrics	K1
CO2	Outline the aspects in software project management and software quality assurance	K2
CO3	Model various phases in software and challenges faced during design, development and testing	К3
CO4	Examine the functions of software requirement gathering and cost estimation process	K4
CO5	Evaluate various development techniques and implementation methods	K5
CO6	Build and design real time software projects	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	3	1	3
CO4	9	9	9	9	3	1	3
CO5	9	9	9	9	1	3	1
CO6	9	9	9	9	1	1	3
Total contribution of COs to POs	54	54	54	54	26	24	28
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	4.1	2.4	4.8

UNIT I: Product Life Cycle (10 Hours)

Product Life Cycle: Introduction – Idea Generation- Prototype Development Phase- Alpha phase – Beta phase- Protection phase- Maintenance and obsolescence phase. Project Life Cycle Models: What is project life cycle model-A frame work for studying different life cycle models- The waterfall model- The prototype model- The Rapid Application Development Model- The spiral model and its variants. Metrices: Introduction- The metrices roadmap- A typical metrices strategy – What should you measure – Set Targets and Track them- Understanding and Trying to minimize variability- Act on data-People and Organisational Issues in metrices programmes- Common Pitfalls to watch out for in metrices programmes- Metrices implementation checklists and tools.

UNIT II: Software configuration management (10 Hours)

Introduction-Basic definitions and terminology-The Process and Activities of software Configuration Audit –Software configuration management in geographically distributed teams-Metrices in software configuration management –Software configuration management tools and automation. Software quality assurance: How do you define quality- Why is quality important in software- Quality Control and quality assurance –Cost and benefits of quality – Software quality analyst's functions- Some popular misconceptions about the SQA's role –Software quality assurance tools –Organizational structures –Profile of a successful SQA-measures of SQA success –Pitfalls to watch out for in the SQA's role. Risk management: Introduction-What is Risk management and why is it important- Risk management cycle- Risk identification: Common tools and techniques- Risk quantification –Risk monitoring-Risk mitigation- Risks and mitigation in the context of global project- Teams –Some practical techniques in risk management –Metrices in risk management.

UNIT III: Software Requirements Gathering (10 Hours)

Inputs and start criteria for requirements gathering- Dimensions of requirements gathering Steps to be followed during requirements gathering outputs and quality records from the requirements phase- Skills sets required during the requirements phase- Differences for a Shrink-wrapped software- Challenges during the requirements management phase- Metrices for the requirement phase. Estimation: what is estimation-when & why is estimation done The Three phases of estimation-Estimation methodology- Formal models for size estimation – Translation effort estimated into schedule estimates –Common challenges during estimation Metrices for the estimation processes.

UNIT IV: Design and Development Phases (10 Hours)

Some difference in our chosen approach-Salient features of design- Evolving an architecture /Blueprint –Design for reusability- Technology choices /constraints –Design to standards – Design for portability- User interface issues- Design for testability-Design for diagnosability-Design for maintainability- Design for Installability- Inter –Operability design-Challenges during design and development phases-Skill sets for design and development metrices for design and development phases. Project management in the testing phase: Introduction- What is testing-

What are the activities that make up testing- Test scheduling and types of tests-People issues in testing management structures for testing in global teams –Metrics for testing phase.

UNIT V: Project Management in the Maintenance Phase (8 Hours)

Introduction- Activities during the maintenance phase-management issues during the maintenance phase- Configuration management during the maintenance phase –Skill sets for people in the maintenance phase estimating size, effort and people resources for the maintenance phase-Metrics for the maintenance phase. Globalization issues in project management: Evolution of globalization- Challenges in building global teams-Models for the execution of some effective management techniques for managing global teams. Impact of the internet on project management: Introduction – The effect of internet on project management –Managing projects for the internet- Effect on project management activities.

- 1. Gobalswamy Ramesh, "Managing Global Software Projects", Tata McGraw Hill Publishing Company, 2003.
- 2. S.A. Kelkar, "Software Project Management –A concise study", PHI, 2003 Mike Cotterel, Bob Hughes, "Software Project Management", Inclination / Thomas computer press, 1955.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XI	21CAP11	OPERATING SYSTEM	48	4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	II	50	50	100

Preamble

To understand the fundamental of operating system and different methods and techniques used. **Course Outcomes**

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Outline the Memory Management, Processor	K 1
	Management, Device Management and Information	
	Management	
CO2	Explain the basic principles of Multiprogramming and	K2
	Job Scheduling	
CO3	Illustrate awareness and a fundamental understanding of	K3
	various applications used in operating system	
CO4	Analyze DOS, Windows 98, Windows NT & Linux	K4
CO5	Apply scientific methods to model Job scheduling	K5
CO6	Demonstrate Memory Management, Processor	K6
	Management, Device Management and Information	
	Management using various methods	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	3	3
CO4	9	9	9	9	3	3	1
CO5	9	9	9	9	1	3	1
CO6	9	9	9	9	1	3	1
Total contribution of COs to POs	54	54	54	54	14	30	12
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	2.2	3.0	2.1

UNIT I: Overview of Operating System (8 Hours)

Overview of Operating System: Importance of Operating Systems; Basic Concepts and Terminology; An Operating System Resource Manager: Memory Management Functions, Processor Management Functions, Device Management Functions, and Information Management Functions.

UNIT II: Memory Management (10 Hours)

Memory Management: Single Contiguous Allocation: H/W Support, S/W Support, Advantages, Disadvantages; Introduction to Multiprogramming: Concept of Multiprogramming, Measure of System I/O Wait Percentage, Relevance of Multiprogramming to Memory Management; Partitioned Allocation, Relocatable Partitioned Memory Management, Paged Memory Management, Demand-Paged Memory Management, Segmented Memory Management, Other Memory Management Schemes (Swapping, Overlays).

UNIT III: Processor Management (10 Hours)

Processor Management: State Model: Job Scheduler, Process Scheduling, Job and Process Synchronization, Structure of Processor Management; Job Scheduling: Functions, Policies, Job Scheduling in Non multi programmed environment, Job Scheduling in multi programmed environment; Process Scheduling, Multiprocessor Systems: Separate Systems, Coordinated Job Scheduling, Master/Slave Scheduling, Homogeneous Processor scheduling; Process Synchronization: Race Condition, Synchronization Mechanism, Deadly Embrace, Synchronization Performance Considerations.

UNIT IV: Device Management (10 Hours)

Device Management: Techniques for Device Management: Dedicated Devices, Shared Devices, Virtual Devices; Device Characteristics- Hardware Considerations: Input or Output Devices, Storage Devices; Channels and Control Units: Independent Device Operation, Buffering, Multiple Paths, Block Multiplexing; Device Allocation Considerations; Virtual Devices.

UNIT IV: Information Management (10 Hours)

Information Management: Introduction; A Simple File System; General Model of a File System; Symbolic File System; Basic File System, Access Control Verification; Logical File System; Physical File System; Case study on DOS, Windows 98, Windows NT & Linux.

- 1. Madnick E., Donovan J., "Operating Systems", Tata McGraw Hill.
- 2. Silbershatz and Galvin, "Operating System Concepts", Addison Wesley.
- 3. Tannenbaum, "Operating systems", PHI.4. Peterson, "Operating System".

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XII	21CAP12A	ARTIFICIAL	48	3
	ELECTIVE: II		INTELLIGENCE		

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	
I	II	50	50	100	

Preamble:

To learn about the concepts of Artificial Intelligence and Expert System

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Outline the fundamental understanding of the history of Artificial Intelligence(AI) and its foundations.	K1
CO2	Explain basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.	K2
CO3	Illustrate awareness and a fundamental understanding of various applications of AI techniques in knowledge representation methods and expert systems.	К3
CO4	Analyze AI problems using various search techniques and develop applications in an AI language and expert system shell	K4
CO5	Apply scientific methods to model AI techniques	K5
CO6	Demonstrate AI and its current scope and limitations, and social implications.	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	3	9	3	3	9	3
CO5	9	3	3	3	3	3	3
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

Level of correlation: 0-No correlation; 1-Low correlation;

3-Medium correlation; 9-High correlation between COs and POs.

UNIT I: Introduction – Problems and Search (8 Hours)

What is an AI Technique? - Problems, Problems Space and Search – Defining the Problem as a State Search – Production Systems – Problem Characteristics – Production System Characteristics – Issues in the Design of Search Programs - Heuristic Search Techniques: Generate and Test – Hill Climbing – Best First Search. Problem Reduction – Constraint Satisfaction – Means – Ends Analysis.

UNIT II: Knowledge Representation (10 Hours)

Knowledge Representation Issues: Representations and Mappings – Approaches to Knowledge Representation – Issues in Knowledge Representation – The Frame Problem. Using Predicate Logic: Representing Simple Facts in Logic – Representing Instance and Isa Relationships – Computable Functions and Predicates – Resolution. Representing Knowledge Using Rules: Procedural versus Declarative Knowledge - Logic Programming – Forward versus Backward Reasoning – Matching – Control Knowledge.

UNIT III: Game Playing and Planning (10 Hours)

Game Playing: The Minimax Search Procedure - Adding Alpha-Beta Cutoffs - Additional Refinements - Iterative Deepening - Planning: The Blocks World - Components of a Planning System - Goal Stack Planning - Nonlinear Planning Using Constraint Posting - Hierrarcical Planning

UNIT IV: Natural Lanaguage Processing and Learning (10 Hours)

Natural Language Processing: Introduction - Syntactic Processing - Semantic Analysis - Discourse and Pragmatic Processing - Learning: What is Learning? - Rote Learning - Learning by Taking Advice - Learning in Problem Solving - Learning from Examples - Explanation Based Learning - Discovery - Analogy - Foemal Learning Theory - Neural Net Learning and Genetic Learning

UNIT V: Expert Systems, Perception and Action (10 Hours)

Expert Systems: Representing and Using Domain Knowledge - Expert System Shells - Explanation - Knowledge Acquisition - Perception and Action: Real-Time Search - Perception - Action - Robot Architectures.

- 1. Elain Rich & Kevin Knight, Artificial Intelligence Tata McGraw Hill Second Edition,
- 2. Stuart Russel, Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition
- 3. David W. Rolston, Principles of Artificial Intelligence & Expert Systems Development McGraw Hill.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XII	21CAP12B	ADHOC AND SENSOR	48	3
	ELECTIVE: II		NETWORKS		

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	
I	II	50	50	100	

Preamble:

To educate students in implementing mobile adhoc and sensor networks in industries. It gives the research and application of advanced wireless technologies for day today life.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Describtion of Mobile Adhoc and sensor networks	K1
CO2	Explain working principles of WSN and Adhoc networks	K2
CO3	Illustrate the sensors and adhoc principles in wireless	K3
	latest technologies	
CO4	Analyze the Adhoc& WSN Architectural style	K4
CO5	Design, implementing process of MANET & WSN	K5
CO6	Apply the MANET & WSN with different algorithms	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	3	9	3	3	9	3
CO5	9	3	3	3	3	3	3
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

Level of correlation: 0-No correlation; 1-Low correlation;

3-Medium correlation; 9-High correlation between COs and POs.

UNIT I: Mobile Communications and Computing (8 Hours)

Introduction Mobile Communications and computing: Mobile Computing (MC)-Introduction to MC, novel applications, limitations, and architecture GSM – Mobile services, System Architecture, Radio interface, Protocols, Localization and calling, Handover, Security, and new data services.

UNIT II: Wireless Medium Access Control (10 Hours)

Wireless Medium Access Control: Motivation for a specialized MAC, SDMA, FDMA, TDMA, CDMA. Mobile Network layer – Mobile IP (Goals, assumptions, entities and terminology, IP packet delivery, agent advertisement and discovery, registration, tunneling and encapsulation, optimizations), Dynamic Host configuration Protocol (DHCP). Mobile transport layer – traditional TCP, Indirect TCP, Snooping TCP, Mobile TCP, Fast retransmit/ fast recovery, Transmission / timeout freezing, Selective retransmission, Transaction oriented TCP.

UNIT III: Mobile Ad Hoc Networks(MANET) (10 Hours)

Mobile Ad Hoc Networks(MANET): Overview, Properties of a MANET, spectrum of MANET applications, routing and various routing algorithms, Security in MANET protocols, and Tools: Wireless Application Protocol – WAP. (Introduction, protocol architecture, and treatment of protocols of all layers), Bluetooth (User scenarios, physical layer, MAC layer, networking, security, link management) and J2ME.

UNIT VI: Wireless Sensor Network (10 Hours)

Wireless Sensor Network: Wireless Sensor Network Applications, Collaborative processing, Key Definitions of sensor networks. Canonical problem- localization and Tracking, Bayesian state estimation, Distributed representation and interface of states, impact of choice of representation, design consideration in distributed tracking, tracking multiple objects, state space decomposition, data association, sensor models, performance comparison and metrics.

UNIT V: Protocols (10 Hours)

Protocols: IIIE 802.15.4 standard and zigbee, general issues, geographic, energy –aware routing, unicast geographic routing, routing on a curve, energy – minimizing broadcast, attribute- based routing, directed diffusion, rumor routing, geographic hash tables; infrastructure establishment, topology control, clustering, time synchronization, clocks and communication delays, interval methods, broadcasts, localization and localization services, ranging techniques, range based localization algorithms, information- based sensor tasking. IDSQ: information driven sensor querying, cluster leader based protocol, sensor tasking in tracking relations, joint routing and information aggregation, multi step information – directed routing, sensor group management.

- 1. Jochen Schiller, Mobile Communications, Addison-Wesley, Second edition.
- 2. Feng Zhao, Leonidus Guibas, Wireless Sensor Networks-An information Processing approach, Elsevier publication.

CATE GORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XII ELECTIVE: II	21CAP12C	DIGITAL IMAGE PROCESSING	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
Ι	II	50	50	100

Preamble:

To attain the knowledge of digital image processing

Course Outcomes:

On successful completion of the course the students should have:

CO	CO Statement	Knowledge Level
Number		
CO1	Define the concepts of digital image processing	K1
CO2	Discuss the various image processing methods and	K2
	image transform formats	
CO3	Illustrate sampling, filtering and detection methods	К3
CO4	Analyze the enhancement, segmentation, restoration	K4
	and compression techniques with denoising	
CO5	Summarize the different image processing techniques	K5
CO6	Generalize the overview of image processing	K6
	techniques with different methods	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	3
CO4	9	3	9	3	3	3	3
CO5	9	3	3	3	3	9	9
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

Unit I: Introduction to Image – Processing (8 Hours)

Introduction to Image – Processing: Introduction – Resolution – Human Visual System – Classification of Digital Images- Image types- Elements of an Image – processing system- Image file formats – Applications of Digital Image Processing- **Image Transform**: Introduction – Need for Transform – Image Transform – Fourier Transform – 2D Discrete Fourier Transform.

Unit II: Image Enhancement (10 Hours)

Image Enhancement: Introduction – Image Enhancement in Spatial Domain –Enhancement through Point operation – Types of Point Operation – Histogram Manipulation – Linear Gray-Level Transformation – Nonlinear Gray-Level Transform – Local or Neighbourhood Operation – Median Filter – Spatial Domain High-pass Filtering or Image Sharpening – Bit-plane Slicing – Image Enhancement in Frequency Domain – Homomorphic Filter – Zooming Operation – Image Arithmetic

Unit III: Image Restoration and Denoising (10 Hours)

Introduction – Image Degradation – Types of Image Blur – Classification of Image – restoration Techniques – Image-restoration Model – Linear Image – restoration Techniques – Image Denoising – Classification of Noise in Image – Median Filtering – Trimmed Average Filter – Performance Metrics in Image Restoration – Applications of Digital Image Restoration.

Unit IV: Image Segmentation (10 Hours)

Introduction – Classification of Image – segmentation Techniques – Region Approach to Image Segmentation – Clustering Techniques – Image Segmentation Based on Thresholding – Edgebased Segmentation – Classification of Edges – Edge Detection – Edge Linking.

Unit V: Image Compression (10 Hours)

Introduction – Need for Image Compression – Redundancy in Images – Classification of Redundancy in Images – Image-compression Scheme – Classification of Image-compression Schemes – Fundamentals of Information theory – Wavelet – based Image Compression – Fractal Image Compression

- 1. S.Jeyaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing", McGraw Hill Education (India) Private Limited, New Delhi, 2014
- 2. Rafael G. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education. 3rd Edition.
- 3. A.K. Jain, "Fundamental of Digital Image Processing", PHI Publications, 4th Edition 2011.
- 4. Chanda & Majumdar," Digital Image Processing and analysis", PHI Publications, 2nd Edition 2007.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XII ELECTIVE: II	21CAP12D	VIRTUAL REALITY SYSTEMS	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	II	50	50	100

Preamble:

The Proposed Paper offers to explore materials and processes used in immersive virtual reality; show a basic awareness and understanding of historical and theoretical contexts relevant to immersive virtual reality and Demonstrate an understanding of the importance of critical and self-reflective practice.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Define the Basics and Introduction of Virtual Reality and how	K 1
	VR systems work.	
CO2	Illustrate the Impressive Virtual Reality Tools	K2
CO3	Choose, develop, experiment, the use of particular designs for	K3
	VR experiences.	
CO4	Summarize, distill, and design a research contribution within	K4
	academic VR.(Virtual Reality take Part in Classroom, Campus	
	and Industrial Training)	
CO5	Evaluate the drawbacks of specific VR techniques on the human	K5
	body.	
CO6	Develop the Running Experiments in Virtual Labs	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	3
CO4	9	3	9	3	3	3	3
CO5	9	3	3	3	3	9	9
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

Level of correlation: 0-No correlation; 1-Low correlation;

3-Medium correlation; 9-High correlation between COs and POs.

UNIT I: Introduction to Virtual Reality (8 Hours)

Immersion in Alternate Worlds: What is Virtual Reality? - How does Virtual Reality Work? - A Quick Tour of VR - Immersing the Audience - Entertaining the Senses.

UNIT II: The Tools of Virtual Reality (10 Hours)

Reality in a Box - Trackers: Where in the (Virtual) World Are You? - Virtual Visualization - Three - Dimensional Sound- Touching Objects in Thin Air: Manipulation Devices - Working in Wide - Open Spaces: Projection - Based VR.

UNIT III: Science with VR (10 Hours)

Getting a Feel for Microsoft World - Exploring Other Planets via VR - VR and Scientific Visualization - Running Experiments in Virtual Labs - Blowing in the Virtual Wind.

UNIT IV: Learning, Training, and Playing in VR (10 Hours)

VR in the Classroom - VR on Campus - High- Tech Training in Virtual Environments - Virtual Industrial Training - VR and Entertainment - Virtual Worlds within a Virtual World - VR Gaming at Home .

UNIT V: Real Drawbacks to Virtual Reality (10 Hours)

Cyberhype: Mistaking Pipe Dreams for Predictions - The Physical drawbacks of Virtual Reality - Cyberspace Sickness - Decompressing from VR - Blurring the Definition of Reality.

REFERENCE BOOKS:

- 1. Sean M.Grady, "Virtual Reality Computers Mimic The Physical World", University Press (India) Limited Publications.2000
- 2. John Vince, "Virtual Reality Systems", Pearson Publications.
- 3. Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations of Effective Design", Morgan Kaufmann, 2009.
- 4. Gerard Jounghyun Kim, "Designing Virtual Reality Systems", the Structured Approach, Springer London, 2005.

WEB REFERENCES:

https://www.researchgate.net/publication/359254589 Visualization in virtual reality a systematic review

https://www.youtube.com/watch?v=Nq3mPFgpREE

https://www.sciencedirect.com/science/article/pii/S2212827120305539

https://www.youtube.com/watch?v=bN3JSk9xrhE

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTA CT HOURS	CREDIT (C)
PART – III	CORE: XIII	21CAP13	DATA STRUCTURES AND	48	2
	PRACTICAL: III		ALGORITHMS USING		
			JAVA - PRACTICAL		

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	II	50	50	100

Preamble

The course presents various data structures and algorithms with its implementation in JAVA to obtain practical understanding of their concepts and applications.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Recall various data structures, algorithms and sorting methods while	K1
	writing programs	
CO2	Demonstrate the concepts of data structures and algorithms using Java	K2
CO3	Select appropriate data structure and algorithm to solve a specific problem	K3
CO4	Analyze various algorithms with respect to their computational efficiency	K4
CO5	Justify the application of a specific algorithm to solve the given problem	K5
	with respect to its space and time complexity	
CO6	Develop software in Java using various data structures and algorithms for	K6
	real time applications	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	9	3
CO2	9	9	9	9	9	9	3
CO3	9	9	9	9	9	9	3
CO4	9	9	9	9	9	9	3
CO5	9	9	9	9	3	9	3
CO6	9	9	9	9	9	9	3
Total contribution of COs to POs	54	54	54	54	48	54	18
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	7.6	5.4	3.1

- 1. Program to implement push and pop operations in a stack.
- 2. Program to implement insert and delete operations in a queue.
- 3. Program to implement insertion and deletion operations in a singly linked list.
- 4. Program to convert an infix expression to postfix expression and evaluate it.
- 5. Program to implement in order, pre order and post order traversal of a binary tree.
- 6. Program to implement breadth first and depth first search algorithm in a graph.
- 7. Program to implement binary search using divide and conquer method
- 8. Program to implement quick sort using divide and conquer method
- 9. Program to construct minimum cost spanning tree using Kruskal algorithm
- 10. Program to perform Job sequencing with deadlines using Greedy algorithm
- 11. Program to solve knapsack problem using dynamic programming
- 12. Program to solve Traveling Salesman problem using dynamic programming

	CATEGORY	COURSE TYPE	COURS E CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
-	PART – III	CORE: XIV PRACTICAL: IV	21CAP14	WEB PROGRAMMING - PRACTICAL	48	2

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	II	50	50	100

Preamble

This course provides programming skills in HTML,PERL and PHP. To enable the students to develop web based application

Course Outcomes

On successful completion of the course the students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define the basic of HTML Forms and Controls and validation	K1
CO2	Tagging the arithmetic operations, Email Processing in Java Script	K2
CO3	Execute the Data Base Concepts	К3
CO4	Calculate the web page view count using session	K4
CO5	Display the digital clock which displays date and time using Perl Program	K5
CO6	Design and build the server information's	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	3	9	9	3
CO2	9	9	9	3	9	9	3
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	9	9	9
CO5	9	9	9	9	9	9	9
CO6	9	9	9	9	9	9	9
Total contribution of COs to POs	54	54	54	42	54	54	42
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	3.7	8.5	5.4	7.2

- 1. Create a HTML form with Name, Address and E-mail text fields. On submitting, store the values in MySQL table.
- 2. Write JavaScript to validate the following fields of the above registration page.
 - a. Name (Name should contains alphabets and the length should not be less than 6 characters).
 - b. Password (Password should not be less than 6 characters length).
 - c. E-mailid (should not contain any invalid and must follow the standard pattern name@domain.com)
 - d. Phone number (Phone number should contain 10 digits only)
- 3. Write a JavaScript to design a simple calculator to perform the following operations: sum, product, difference and quotient
- 4. Write a program in PHP for a simple email processing.
- 5. Write a program for PHP for a login script; create a login database and store username and password.
- 6. Write PHP program to upload image to the server using html and PHP
- 7. Write a PHP program to store page views count in SESSION, to increment the count on each refresh, and to show the count on web page
- 8. Write a Perl program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.
- 9. Write a Perl program to display a digital clock which displays the current time of the server.
- 10. Write a Perl program to display Server Information's.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – IV	ABILITY ENHANCEMENT	21AEP01	CYBER SECURITY	24	2

YEAR	YEAR SEMESTER INT		EXTERNAL MARKS	TOTAL MARKS
I	II	100	-	100

Preamble:

To understand the basics of cyber security and the security threats in day-to-day activities.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Recall the basic concepts of information security and	K1
	its types	
CO2	Gain knowledge on cyber space issues and cyber	K2
	security measures	
CO3	Identify various risks and threats in cyber space	К3
CO4	Apply security measures to prevent ourselves from	K4
	threats in social media	
CO5	Compare various social media, security issues and	K5
	measures	
CO6	Propose a secured cyber platform for people to	K6
	connect each other for their social and professional	
	concerns	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	3	9	9
CO5	9	9	3	3	3	9	3
CO6	9	9	3	3	3	3	3
Total contribution of COs to POs	54	54	42	42	36	48	42
Weighted Percentage COs Contribution to POs	4.2	4.5	3.6	3.7	5.7	4.8	7.2

UNIT I: Information Security (5 Hours)

History of Information Security - Need for Security-**Types of Security:** Physical Security - Network Security - Personal Security - Operation Security - Communication Security - Information Security Threats.

UNIT II: Introduction to Cyber Security (5 Hours)

Cyber Security: Objectives- Roles- Differences between Information Security and Cyber Security. **Cyber Security Principles:** Confidentiality- Integrity – Availability.

UNIT III: Risks & Vulnerabilities (5 Hours)

Risk Meaning: Risk Management –Problems of Measuring Risk -Risk Levels-Risk Analyzes-Risk Assessment –Response to Risk Terminology- **Threats:** Components of Threats-Types of Threats- **Vulnerabilities:** Computing System Vulnerabilities –Hardware Vulnerabilities-Software Vulnerabilities-Data Vulnerabilities-Human Vulnerabilities.

UNIT IV: Social media (5 Hours)

Introduction to social media: What, Why –Pros and cons- Security issues in social media: Mail-Facebook-Whatsapp-Twitter-Preventive and control measures.

UNIT V: Case study (4 Hours)

Impact of social media: Education -Business- Banking-Mobile -Human Life- Present generation-Indian scenario.

WEB REFERENCES:

- 1. https://m.youtube.com/watch?v=o6pgd8gLFHg
- 2. https://m.youtube.com/watch?v=3rl4ZjZpcHU
- 3. https://blog.barkly.com/10-fundamental-cybersecurity-lessons-for-beginners
- 4. https://5social media security risk and how to avoid them.html
- 5. https://10 cyber security twitter profiles to watch.html
- 6. https://cyber security in banking 4 trends to watch in 2017.html
- 7. https://gmail hacking security tips-indian cyber security solutions.html
- 8. https://why social media sites are the new cyber weapons of.html
- 9. EBook: A complete guide to Staying Ahead in the Cyber Security Game

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XV	21CAP15	DATA MINING AND BIG DATA ANALYTICS	60	4

YEAR	SEMESTER INTERNAL MARKS		EXTERNAL MARKS	TOTAL MARKS
II	III	50	50	100

Preamble:

To attain the knowledge in basic of Data Mining and the students can learn, Understand and Practice Big Data Analytics.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
Number		
CO1	Define Data Mining concepts with Hadoop architecture	K1
CO2	Explain Data Mining Techniques and Algorithms	K2
CO3	Interpret R Language and Hadoop architecture with	K3
	algorithms	
CO4	Categorize classification, clustering and association	K4
	rules in data mining	
CO5	Estimate Data Mining Algorithms with R language	K5
CO6	Integrate different measures using data mining	K6
	techniques	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	9	3
CO4	9	9	9	9	3	9	3
CO5	9	9	9	9	3	3	1
CO6	3	3	3	9	3	3	1
Total contribution of COs to POs	48	48	48	54	18	42	14
Weighted Percentage COs Contribution to POs	3.8	4.0	4.1	4.7	2.8	4.2	2.4

Unit I: Introduction to Data Mining Techniques (12 Hours)

Introduction: Basic Data Mining Tasks- Data Mining Versus Knowledge Discovery in Databases- Data Mining Issues- Data Mining Metrics-Social Implication of Data Mining- Data Mining from a Database Perspective- Database /OLTP Systems-Fuzzy sets and Fuzzy Logic.

Data Mining Techniques: Introduction- A statistical Perspective on Data Mining- Similarity Measures – Decision Tress-Neural Networks-Genetic Algorithms.

Unit II: Classification (12 Hours)

Classification: Introduction- Statistical- Based Algorithm- Distance-Based Algorithms – Decision Tree-Based Algorithms- Neural Network-Based Algorithm-Rule Based Algorithm-Combining Techniques.

Unit III: Clustering and Association Rules (12 Hours)

Clustering: Introduction- Similarity and Distance Measures- Outliers- Hierarchical Algorithms- Partitional Algorithms.

Association Rules: Introduction- Large Item sets- Basic Algorithms- Parallel and Distributed Algorithms- Comparing Rules-Advanced Association Rule Techniques.

Unit IV: Using R and Hadoop (12 Hours)

Getting Ready to Use R and Hadoop: Installing R- Installing RStudio- Understanding the Features of R language- Installing Hadoop- Understanding Hadoop features- Learning the HDFS and MapReduce architecture.

Writing Hadoop MapReduce Programs: Understanding the basics of MapReduce-Introducing Hadoop MapReduce –Understanding the Hadoop MapReduce Fundamentals.

Unit V: Integration R and Hadoop (12 Hours)

Integration R and Hadoop: Introducing RHIPE- Understanding the architecture of RHIPE- Understanding RHIPE Samples- Introducing RHadoop.

Using Hadoop Streaming with R: Basics of Hadoop streaming- How to run Hadoop streaming with R?- Exploring the HadoopStreaming R Package.

- **1.** Margaret H.Dunham, "Data Mining- Introductory and Advanced Topics", Pearson Education, 2009. (Unit:1,2,3)
- 2. Vignesh Prajapati, "Big Data Analytics with R and Hadoop", PACKT Publishing, 2013. (Unit:4 & 5)
- 3. Radha Shankarmani and M.Vijayalakshmi, "Big Data Analytics", 2nd Edition, Wiley.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE : XVI	21CAP16	MACHINE LEARNING USING PYTHON	48	4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	
II	III	50	50	100	

Preamble:

This course covers the basic concepts and techniques of Machine Learning and implementation of algorithms using python programming.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Gain knowledge about basic concepts of Machine Learning.	K1
CO2	Identify machine learning techniques suitable for a given problem	K2
CO3	Apply suitable machine learning techniques for various applications.	К3
CO4	Compare various supervised and unsupervised learning algorithms	K4
CO5	Assess strengths and weaknesses of popular machine learning approaches.	K5
CO6	Design and implement various machine learning algorithms in a range of real-world applications.	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	9	3
CO4	9	9	9	9	3	9	3
CO5	9	9	9	3	3	9	3
CO6	9	9	3	3	3	3	3
Total contribution of COs to POs	54	54	48	42	18	48	18
Weighted Percentage COs Contribution to POs	4.2	4.5	4.1	3.7	2.8	4.8	3.1

UNIT I: Introduction (8 Hours)

Introduction- Why Machine Learning?- Why Python? - Essential Libraries and Tools- A First Application: Classifying Iris Species

UNIT II: Supervised Learning (10 Hours)

Classification and Regression- Generalization, Overfitting, and Underfitting -Supervised Machine Learning Algorithms: Some Sample Datasets - k-Nearest Neighbors : k-Neighbors classification- k-neighbors regression - Linear Models : Linear models for regression - Linear regression- Linear models for classification-Linear models for multiclass classification - Naive Bayes Classifiers - Decision Trees.

UNIT III: Unsupervised Learning and Preprocessing (10 Hours)

Types of Unsupervised Learning -Challenges in Unsupervised Learning -Preprocessing and Scaling -Dimensionality Reduction, Feature Extraction, and Manifold Learning: Principal Component Analysis (PCA)- Clustering: k-Means Clustering - Agglomerative Clustering: Hierarchical clustering and dendrograms –DBSCAN.

UNIT IV: Representing Data and Engineering Features (10 Hours)

Categorical Variables - OneHotEncoder and ColumnTransformer: Categorical Variables with Scikit-learn - Convenient ColumnTransformer creation with make_columntransformer - Automatic Feature Selection

UNIT V: Working with Text Data (10 Hours)

Types of Data Represented as Strings -Representing Text Data as a Bag of Words: Applying Bag-of-Words to a Toy Dataset - Stopwords - Bag-of-Words with More Than One Word (n-Grams) - Topic Modeling and Document Clustering

- 1. Andreas C. Müller, Sarah Guido, Introduction to Machine Learning with Python, October 2016. Publisher(s): O'Reilly Media, Inc.
- 2. Sebastian Raschka, Python Machine Learning, 2015, Packet Publishing Giuseppe Bonaccorso, Machine Learning Algorithms, 2017.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XVII	21CAP17	NETWORK SECURITY AND CRYPTOGRAPHY	60	4

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
II	III	50	50	100

Preamble:

To attain the knowledge in basic of network security and various methods in cryptography

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define the basics of network security	K1
CO2	Summarize the intrusion detection and its solutions to overcome the attacks	K2
CO3	Organize the Asymmetric Key Algorithms and Digital Signatures	К3
CO4	Analyze the knowledge on symmetric key algorithms	K4
CO5	Inspect the concept of digital signature	K5
CO6	Design the Network Security, Firewalls and Virtual Private Networks	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	3	3
CO2	9	9	9	9	3	3	3
CO3	9	9	9	9	9	3	3
CO4	9	9	9	9	9	3	1
CO5	9	9	9	9	9	3	1
CO6	9	9	9	9	9	3	1
Total contribution of COs to POs	54	54	54	54	42	18	12
Weighted Percentage COs Contribution to	4.2	4.5	4.6	4.7	6.6	1.8	2.1
POs							

UNIT I: Introduction to Network Security (12 Hours)

Attacks on Computers and Computer Security: Introduction-The Need for security- Security Approaches-Principles of Security-Types of Attacks. Cryptography: Concepts and Techniques: Introduction-Plain Text and Cipher Text-Substitution techniques- Transposition techniques- Encryption and Decryption- Symmetric and Asymmetric Key Cryptography- Steganography

UNIT II: Symmetric Key Algorithms (12 Hours)

Symmetric Key Algorithms: Algorithms Types and Modes-An Overview of Symmetric key Cryptography- Data Encryption Standard (DES)- International Data Encryption Algorithm (IDEA)- RC4- RC5- Blowfish.

UNIT III: Asymmetric Key Algorithms and Digital Signatures (12Hours)
Asymmetric Key Algorithms, Digital Signatures and RSA: Brief history of Asymmetric Key
Cryptography- Overview of Asymmetric Key Cryptography- RSA Algorithm- Symmetric and
Asymmetric key Cryptography together- Digital Signatures- Knapsack Algorithm.

UNIT IV: Digital Certificates and Internet Security Protocol (12 Hours)

Digital Certificates- Private Key Management. Internet Security Protocols: Basic conceptsSecure Socket Layer (SSL)- Transport Layer Security (TLS)- Secure Hyper Text Transfer

Protocol (SHTTP)- Time Stamping Protocol (TSP)- Secure Electronic Transaction (SET)

UNIT V: Network Security, Firewalls and Virtual Private Networks (12 Hours)
Introduction-Brief Introduction to TCP/IP- Firewalls- IP Security- Virtual Private Networks (VPN)- Intrusion.

- 1. Atul Kahate, Cryptography and Network Security, 2nd Edition, Tata McGrawHill. (Unit I: Chapter 1,2, Unit II: Chapter 3, Unit III: Chapter 4, Unit IV: Chapter 5,6 Unit V: Chapter 7)
- 2. William Stallings, Cryptography and Network Security, Fifth Edition, Pearson Education. Douglas Stinson, Cryptography: Theory and Practice, CRC Press, CRC Press LLC

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XVIII ELECTIVE: III	21CAP18A	INTERNET OF THINGS	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
II	III	50	50	100

Preamble:

To enable the students to understand the concepts of IOT AND technologies used to build IoT applications.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	To identify the vision of IoT and its future roadmap	K1
CO2	Understanding the technologies used for IoT applications	K2
CO3	Use IoT to solve real world problems	К3
CO4	Examine the constraints and opportunities of wireless networks for IoT.	K4
CO5	Assess potential security issues and solutions in IoT	K5
CO6	To design new IoT based prototypes for real life situations	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	3	9	3	3	9	3
CO5	9	3	3	3	3	3	3
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

UNIT I: Introduction and Design Principles for Connected Devices (8 Hours)

Internet of Things- Conceptual framework – Architectural view, Technology behind IoT–Sources of IoT - M2M communication – Examples- IoT/M2M sytems - Layers – Communication Technologies – Gateway

UNIT II: Design Principles for Web Connectivity and Internet connectivity (10 Hours) Web communication Protocols – Message Communication Protocols – Web connectivity using gateway, SOAP, REST, HTTP RESTful and Websockets- Internet connectivity – Internet based Communication – IP Addressing in the IoT- Media Access Control – Application Layer Protocols.

UNIT III: Sensor Participatory Sensing and wireless sensor networks (10 Hours)

Sensor technology – Participatory sensing, Industrial IoT and Automotive IoT – Actuators – Sensor data communication Protocols –Radio Frequency Identification Technology –Wireless Sensors networks Technology.

UNIT IV: Embedded devices Prototyping and Software Designing for IoT (10 Hours)
Embedded computing Basics –Embedded platforms for Prototyping – Things always connected to Internet/Cloud - Prototyping embedded device Software

UNIT V: IoT Security and Case studies (10 Hours)

Vulnerabilities - Security requirements - threat analysis - Identity management and Establishment ,access control and secure message communication -Design Layers , Design Complexity and designing using cloud PaaS - IoT Applications for Smart homes, cities

Environment monitoring and Agriculture.

Education(India) Pvt Ltd., 2017. ISBN-13:978-93-5260-523-1

Reference Books:

- 1. Raj Kamal, Internet of Things Architecture and Design Principles, McGrawHill
- 2. Arshdeep Bahga, Vijay Madisetti, Internet of Things A hands-on approach, Universities Press, 2015.
- 3. Marco Schwartz, Internet of Things with the Arduino Yun, Packt Publishing, 2014.
- 4. Adrian McEwen, Hakim Cassimally, Designing the Internet of Things, ISBN: 978-1-118-43062-0, Wiley, November 2013

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XVIII ELECTIVE: III	21CAP18B	SOFT COMPUTING	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS	
II	III	50	50	100	

Preamble

To understand the Soft computing architectures, applications and challenges

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Understand the basics of neural networks	K1
CO2	Explain the knowledge on supervised and unsupervised	K2
	learning	
CO3	Apply the concepts of fuzzy logic and fuzzy sets	К3
CO4	Analyze the membership functions and defuzzification	K4
CO5	Illustrate Genetic Algorithm	K5
CO6	Evaluate genetic algorithm	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	3	9	3	3	9	3
CO5	9	3	3	3	3	3	3
CO6	9	3	3	3	3	3	3
Total contribution of	54	36	42	36	18	42	36
COs to POs							
Weighted Percentage	4.2	3.0	3.6	3.1	2.8	4.2	6.2
COs Contribution to POs							

UNIT I: Introduction (8 Hours)

Neural Networks – Artificial Neural Network: Fundamental Concepts – Important Terminologies of ANNs - McCulloch-pitts Neuron Model – Linear Separability – Hebb Network.

UNIT II: Supervised and Unsupervised Learning (10 Hours)

Supervised Learning Network: Perceptron Networks – Back-Propagation Network – Radial Basis Function Network, Associative Memory Networks: Autoassociative Memory Network – Heteroassociative Memory Network – Bidirectional Associative Memory. Unsupervised Learning Networks: Kohonen Self-Organizing Feature Maps – Learning Vector Quantization.

UNIT III: Fuzzy Logic and Fuzzy Sets (10 Hours)

Classical Sets, Fuzzy Sets- Fuzzy relations, cardinality, operations and properties of fuzzy relations, fuzzy composition.

UNIT IV: Membership Functions and Defuzzification (10 Hours)

Introduction - Feature of the membership functions - Fuzzification - Methods of Membership Value Assignments. Defuzzification.

UNIT V: Genetic Algorithm (10 Hours)

Introduction - Biological Backgroud - Traditional Optimization and Search Techniques - Genetic Algorithm and Search Space, Operators in Genetic Algorithm - Encoding - Selection - Crossover - Mutation.

- 1. S. N. Sivanandam, S.N. Deepa, Principles of Soft Computing, Wiley-India, 2008.
- 2. S. N. Sivanandam, S. Sumathi, S.N. Deepa, Introduction to Neural Networks using MATLAB 6.0, Tata McGraw-Hill, New Delhi, 2006
- 3. D.E. Goldberg, Genetic algorithms, optimization and machine learning, Addison Wesley 2000.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XVIII ELECTIVE: III	21CAP18C	THEORY OF COMPUTATION	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
II	III	50	50	100

Preamble:

This course presents the basic theory of computation, techniques, regular languages, context free languages, pushdown automation and turing machine which could be used in design of a compiler.

Course Outcomes:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Relate Regular Languages and Finite Automata	K1
CO2	Illustrate Context Free Languages.	K2
CO3	Construct Grammar.	K3
CO4	Classify the Chomsky Classification	K4
CO5	Evaluate Pushdown Automation	K5
CO6	Build adequate knowledge in Turing Machine	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	3
CO4	9	3	9	3	3	3	3
CO5	9	3	3	3	3	9	9
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

UNIT I: Regular Languages and Finite Automata (8 Hours)

Finite State Systems – Non Deterministic Finite Automata – Equivalence of DFA and NFA – Finite Automation with \mathcal{E} Moves – Equivalence of NFA's with and without \mathcal{E} Moves – Regular expression and its manipulations-. Minimisation of FSA- Moore and Mealy Machines.

UNIT II: Context Free Languages (10 Hours)

Context Free Grammars – Derivations and Languages – Relation between Derivation and Derivation Trees – Simplification of Context Free Grammars – Normal Forms for Context Free Grammars.

UNIT III: Grammar and Chomsky Classification (10 Hours)

Introduction – Grammar -Chomsky Classification – Formal Grammar – The Hierarchy Languages and their relations- Operations on Languages – Tabular presentation of closure properties of Languages – Recursive and recursively enumerable sets.

Introduction -LR(k) Grammar - LR items - LR(0) Grammar - Computing sets of valid items - Properties of LR(k) Grammar.

UNIT IV: Pushdown Automation (10 Hours)

Introduction – Acceptance by PDA –sPushsown Automata and Context Free Languages – Deterministic Context Free Languages and Deterministic Pushdown Automata – LR(0) Grammar – Parsing.

UNIT V: Turing Machine (10 Hours)

Definition and examples – Computable languages and functions -. Turing Machine construction – Turing Reducibility – P and NP problems – NP Complete and NP hard problems.

- 1. Dr.A/M. Natarajan, A. Tamilarasi, P. Balasubramani, "Theory of Computation", A New Age International Publishers, 2003.
- 2. D.P. Acharjya, "Theory of Computation", MJP Publishers, Second Ediont2010.
- 3. Harry R. Lewis, Christos H. Papadimitrioui, "Elements of the Theory of Computation", PHI Learning Private Ltd., Second Edition.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XVIII ELECTIVE: III	21CAP18D	RESEARCH METHODOLOGY	48	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	III	50	50	100

Preamble

To expose the students with the principles, procedures and techniques of research methodology and assist in planning, carrying and implementing a research project.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Recall the concepts of research, limitations of research, purpose of	K1
	literature review, sources of literature, research problem definition and	
	research design.	
CO2	Infer research types, need for research design, importance of research	K2
	design, classifications of research design, report writing.	
CO3	Develop research approaches, basic principles of research design,	K3
	research report, oral presentation.	
CO4	Classify research process, literature search procedure, qualitative and	K4
	quantitative data, data analysis and interpretation.	
CO5	Justify data collection, dependent and independent variables, criteria	K5
	for good research, guidelines for oral and written presentation of	
	research findings.	
CO6	Propose a research paper for a scientific journal and develop a testing	K6
	hypothesis for research.	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create. CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	9	9	3	9	9
CO3	9	9	9	9	3	9	3
CO4	9	3	9	3	3	3	3
CO5	9	3	3	3	3	9	9
CO6	9	3	3	3	3	3	3
Total contribution of COs to POs	54	36	42	36	18	42	36
Weighted Percentage COs Contribution to POs	4.2	3.0	3.6	3.1	2.8	4.2	6.2

UNIT I: Introduction to Research Methodology (8 Hours)

Introduction to Research: Meaning, Objectives, Types of research – Research approaches – Research methods Vs Methodology - Research process – Criteria of good research – Limitations of research.

UNIT II: Literature Survey & Problem Definition (8 Hours)

Literature Survey: Purpose of review of literature – Literature search procedure – Sources of literature – Importance of review of literature. Selecting a research problem – Problem definition: Necessity, Techniques and Illustration.

UNIT III: Research Design (12 Hours)

Essentials of research design: Need, Features of a good design and important concepts - Classifications of research design - Basic principles of experimental design - Measurement and Scaling: Quantitative, Qualitative, Data Collection, Data Preparation.

UNIT IV: Mathematical Modeling (12 Hours)

Descriptive statistics: Measures of central tendency, Measures of dispersion, Measure of skewness, kurtosis. Measure of Relationship: Regression analysis - Dependent and Independent variable - Simple linear regression model – Hypothesis: Fundamentals of Hypothesis testing – Testing the hypothesis.

UNIT V: Report Writing (8 Hours)

Report writing: Significance of report writing – Different steps in writing report – Layout of research paper – Types of report – Oral presentation – Mechanics of writing research report - Precautions of writing research report - Case study: Preparing a research paper for a scientific journal.

- 1. C R Kothari, Gaurav Garg "Research methodology Methods and Techniques", Third edition, New Age International publishers.
- 2. Kumar," Research Methodology: A Step by Step Guide for Beginners", 3rd. ed. Indian: PE, 2010

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XIX PRACTICAL: V	21CAP19	DATA MINING AND BIG DATA ANALYTICS- PRACTICAL	48	2

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	III	50	50	100

Preamble

To uncover hidden patterns, unknown correlations and other useful information to make better decisions.

Course Outcomes

On the successful completion of the course, students will be able to

.CO	CO Statement	Knowledge
Number		Level
CO1	Recall Data Mining techniques and Hadoop concepts	K1
CO2	Clarify Data Mining Techniques and Hadoop	K2
	framework	
CO3	Apply R Language to implement data mining	K3
	algorithms	
CO4	Investigate various classification and clustering	K4
	algorithm using R language with respect to	
	their computational efficiency	
CO5	Determine tools and techniques to analyze Big Data.	K5
CO6	Design software using Data mining algorithms and Big	K6
	Data Analytics for real time applications using R	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
33,223							
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	9	3
CO4	9	9	9	9	3	9	3
CO5	9	9	9	9	3	3	3
CO6	3	3	3	3	3	3	3
Total contribution of COs to POs	48	48	48	48	18	42	18
Weighted Percentage COs Contribution to POs	3.8	4.0	4.1	4.2	2.8	4.2	3.1

- 1. Implement Apriori algorithm to extract association rule of data mining.
- 2. Implement K-Means Clustering techniques.
- 3. Implement any one Hierarchal Clustering.
- 4. Implement Classification Algorithm
- 5. Implement a decision tree
- 6. Linear regression
- 7. Implement any one statistical based algorithm.
- 8. Implement outliers.
- 9. Implement logistic Regression.
- 10. Implement time series analysis.
- 11. Installation of Hadoop
- 12. File Management tasks in Hadoop
- 13. Word count Map Reduce

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XX PROJECT: I	21CAP20	MINI PROJECT AND VIVA VOCE	60	3

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	III	50	50	100

Preamble

The Proposed Paper intends students to apply the programming knowledge into a real- world situation/problem and promote the concept of entrepreneurship.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Describe the systematic approach for handling a projects	K1
CO2	Illustrate the methodologies and professional way of	K2
	documentation and communication.	
CO3	Demonstrate the key stages in development of the project.	K3
CO4	Analyze the various requirements of the given project	K4
CO5	Evaluate the relevance and level of achievement of project	K5
	objectives	
CO6	Develop innovative thinking and thereby get prepared for	K6
	main project	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	9	9	9
CO5	9	9	9	9	3	9	3
CO6	9	9	9	9	3	3	3
Total contribution of COs to POs	54	54	54	54	42	48	42
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	6.6	4.8	7.2

MINI PROJECT (GUIDELINES FOR MINI PROJECT):

- a. The aim of the Mini Project is to lay a foundation for the Main Project.
- b. Each student should carry out individually one Mini Project Work and it may be a case study using the software packages that they have learned or may be an implementation of a concept in a paper prescribed on a journal.
- c. It should be compulsorily done in the college only under the supervision of the staff concerned.

Departments encouraging project work may adopt the following structure for evaluation of reports else, they shall define their own rubrics as per need. **The project reports** are evaluated at the end of semester by the **Internal & External Examiners** as appointed By COE. Following weightages shall be used to evaluate the Project report:

SPLIT - UP	COMPONENTS		TOTAL MARKS (100)
CIA	Review I and Presentation	25	50
CIA	Review II and Presentation		50
	Problem Identification	10	
ESE*	Nature of Work / Logic behind the study	20	50
	Learning Outcome		
	Viva – Voce	10	

^{*}ESE Viva-Voce for Mini-projects will be jointly conducted by internal and external examiners.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART – III	CORE: XXI	21CAP21	GREEN COMPUTING	36	2

^{*}Open Elective offered for students of other PG Programmes /Departments

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
I	III	50	50	100

Preamble

To acquire knowledge to adopt green computing practices to minimize negative impacts on the environment, skill in energy saving practices in their use of hardware, examine technology tools that can reduce paper waste and carbon footprint by user.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Label the problems concerning with e-waste and its	K1
	consequences on environment	
CO2	Describe the components involved and how effectively we	K2
	can achieve cost saving without harming environment	
CO3	Inspect the procedural aspects towards going green.	K3
CO4	Categorize the means of green compliance	K4
CO5	Specify the certifications necessary for hardware devices	K5
CO6	Assess the green metrics adopt for the entire organization	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	9
CO2	9	9	3	9	3	9	9
CO3	9	9	9	9	3	9	9
CO4	9	6	9	6	3	6	3
CO5	9	6	3	3	3	3	6
CO6	3	3	3	6	3	6	6
Total contribution of COs to POs	48	42	36	42	18	42	42
Weighted Percentage COs Contribution to POs	3.8	3.5	3.0	3.7	2.8	4.2	7.2

UNIT I Green Computing Essentials

(6 Hours)

Overview and Issues: Introduction - green Computing - Problems - Your Company's Carbon Footprint - Cost Savings. **Initiatives and Standards**: Global Initiatives.

UNIT II Green Computing Tribulations and Optimizations (8 Hours)
Minimizing Power Usage: Power problems - Monitoring power Usage - Reducing Power
Usage - Low power Computers - Components. Cooling: Cooling Costs - Reducing Cooling
Costs - Adding Cooling - Datacenter Design.

UNIT III Green Enterprise Transforming (7 Hours)
Changing the Way of Work: Old Behaviour – Steps – Teleworkers and Outsourcing. Going
Paperless: Paper Problems – Paper and Office – Going Paperless – Intranets – Electronic Data
Interchange (EDI).

UNIT IV Green Compliance (7 Hours)
Recycling: Problems – Means of Disposal – Life Cycle – Hard Drive Recycling. Hardware
Considerations: Certification Programs – Energy Star.

UNIT V Green Accomplishment (8 Hours)
Greening Your Information Systems: Initial Improvement Calculations – Change Business
Process – Improve Technology Infrastructure. Staying Green: Organizational Check-ups –
Equipment Check-ups – Certifications – Helpful Organizations.

TEXT BOOKS:

1. Tushar Sambare , Sonali Sambare: Green Computing, Himalaya Publishing House, First Edition 2008.

- 1. Carl Speshocky, Empowering Green Initiatives with IT, John Wiley & Sons, 2010.
- 2. Jason Harris, Green Computing and Green IT- Best Practices on regulations & Industry, Lulu.com, 2008.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART V: PROFICIENCY ENHANCEMENT	SELF STUDY	21PEP01	MANAGEMENT INFORMATION SYSTEM (SELF STUDY)	-	2

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
II	III	-	100	100

Preamble

To expose the students with the structure and classifications of MIS, decision making, system development stages and information system enabler.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Define the concepts of MIS, types of information, support	K1
	systems, system concepts and organizational learning	
CO2	Explain organizational functions, decision making systems,	K2
	system analysis tools, system design and planning	
CO3	Develop different classifications and models of MIS,	K3
	strategies of information systems with concepts of IS	
CO4	Classify design methods of decision support systems and its	K4
	types, structured analysis tools for system development.	
CO5	Determine various models of IS, information requirement	K5
	analysis, testing tools and its working procedures.	
CO6	Design and develop MIS model for a company, bank and	K6
	hotel with real time examples	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	3	9	3
CO2	9	9	9	9	3	9	3
CO3	9	9	9	9	3	9	3
CO4	9	3	9	3	3	3	3
CO5	9	3	3	3	3	3	3
CO6	9	3	3	3	3	3	3
Total contribution of	54	36	42	36	18	36	18
COs to POs							
Weighted Percentage	4.2	3.0	3.6	3.1	2.8	3.6	3.1
COs Contribution to POs							

UNIT I: Introduction, Structure and Classification of MIS

Framework of Management Information Systems: Importance's of MIS - Concepts of management - Information - System - Definition of MIS - Information technology and MIS - Nature and scope of MIS - MIS characteristics and functions. Structure and Classification of MIS: Structure of MIS - MIS structure based on physical components - Information system processing functions - Decision support - Levels of management activities - Organizational functions - MIS classification - Transaction processing system - Management information system - Decision support system - Executive support system.

UNIT II: Decision making and Information Systems

Decision making and MIS: Decision making - Simon's model of decision making - Types of decisions - Purpose of decision making - Level of programmability - Knowledge of outcomes - Methods of choosing among alternatives - Decision making and MIS. Information and system concepts: Types of information - strategic information - Tactical information - Operational information. Information quality, dimensions of information, System: Kinds of Systems - System related concepts - Elements of systems - Human as an information processing system.

UNIT III: System Development, Implementation and maintenance

System Development Approaches: System development stages - System investigation - System analysis - System design - Construction and testing - Implementation - Maintenance. System development approaches (a brief introduction): Waterfall model- Prototyping model - Iterative enhancement model - Spiral model. System analysis: Introduction - Requirement definition - Strategies for requirement definition - Structured analysis tools: Data flow diagram - Data dictionary - Decision trees - Structured English - Decision trees.

UNIT IV: System Design and Planning

System Design: Objectives - Conceptual design - Design methods - Detailed system design.Implementation and evaluation of MIS: Implementation process - Hardware and software selection - Evaluation MIS - System maintenance.Information system Planning: Information system planning - Planning terminology - The Nolan stage model - The four state model of IS planning - Strategic planning - Information requirement analysis.

UNIT V: Information System Enabler

Information system as an Enabler: Introduction - Changing concepts of IS - Information for general management - Information for decision making - Information as a strategic resource IS as an Enabler - Competitive advantage - Organisational change - Organisational learning.

- 1. D.P. Goyal, "Management information systems", Macmillan India Ltd, First Published 2000.
- 2. Whitten, Bentley, & Barlow, "System Analysis and Design Methods", TMH
- 3. J. Kanter, "Structured Analysis & Design of Information System", PHI.

CATEGORY	COURSE TYPE	COURSE CODE	COURSE TITLE	CONTACT HOURS	CREDIT (C)
PART-III	CORE: XXII PROJECT: II	21CAP22	MAJOR PROJECT AND VIVA-VOCE	-	12

YEAR	SEMESTER	INTERNAL MARKS	EXTERNAL MARKS	TOTAL MARKS
II	IV	100	100	200

Preamble

The Proposed Paper allows students to apply the programming knowledge into a real- world situation/problem and promote the concept of entrepreneurship.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Recall the principles and methodologies of software engineering	K1
CO2	Demonstrate the ability to locate and use technical information from multiple sources.	K2
CO3	Apply the acquired communication, technical and programming skills in the development of the project.	K3
CO4	Analyze a given problem to apply appropriate problem solving methodology	K4
CO5	Validate the feasibility of the project	K5
CO6	Develop real time projects as per industry needs	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create.

CO-PO MAPPING (COURSE ARTICULATION MATRIX)

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	9	9	9	9	9	9	9
CO2	9	9	9	9	9	9	9
CO3	9	9	9	9	9	9	9
CO4	9	9	9	9	9	9	9
CO5	9	9	9	9	9	9	9
CO6	9	9	9	9	9	3	3
Total contribution of COs to POs	54	54	54	54	54	48	48
Weighted Percentage COs Contribution to POs	4.2	4.5	4.6	4.7	8.5	4.8	8.2

MAJOR PROJECT (GUIDELINES FOR MAJOR PROJECT):

- a. Each student should carry out individually one Major Project Work using the software packages that they have learned or may be an implementation of a concept in a paper prescribed on a journal.
- b. It should be compulsorily done in the IT Industry or some other company only under the supervision of the staff concerned.

Departments encouraging project work may adopt the following structure for evaluation of reports. **The project reports** are evaluated at the end of semester by the **Internal & External Examiners** as appointed By COE. Following weightages shall be used to evaluate the Project report:

SPLIT - UP	COMPONENTS	TOTAL MARKS (200)	
	Regularity	25	
CIA	Review I and Presentation	25	100
CIA	Review II and Presentation	25	
	Review III and Presentation	25	
	Problem Identification	20	
ESE*	Nature of Work / Logic behind the study		100
	Learning Outcome	10	
	Viva – Voce	50	

^{*}ESE Viva-Voce for projects will be jointly conducted by internal and external examiners.